

COMUNE DI CORREGGIO

corso Mazzini, 33 - 42015, Correggio(RE) SERVIZIO INTERVENTI SUL TERRITORIO E SUL PATRIMONIO

REALIZZAZIONE

DELLA

DORSALE PRINCIPALE

DELLA

RETE DI TELERISCALDAMENTO

A SERVIZIO DELLA CITTA'

* * *

Primo e Secondo Lotto PROGETTO DEFINITIVO - ESECUTIVO

ELABORATO

1

RELAZIONE TECNICA

RESPONSABILE DEL PROCEDIMENTO

COMUNE DI CORREGGIO

Il Dirigente del III Settore ing. Daniele Soncini PROGETTAZIONE

II Direttore ing: Dayide Vezzani

DI CO8

INDICE

1. OGGETTO	3
2. INDIVIDUAZIONE DEL TRACCIATO	3
3. STIMA DELLA POTENZIALITÀ ENERGETICA DELLE CENTRALI	4
4. INDIVIDUAZIONE DELLA TIPOLOGIA DELLA RETE	6
5. DISTRIBUZIONE DEL CARICO TERMICO	7
6. DIMENSIONAMENTO IDRAULICO E SCELTA DEI DIAMETRI	9
7- TEMPI DELL'INTERVENTO	. 12
8 - DISPONIBILITA' AREE E CONFORMITA' URBANISTICA	. 12
9 - CANTIERE E SICURE77A	12

1. OGGETTO

Il presente progetto definitivo - esecutivo ha per oggetto la **realizzazione del I**° **e del II**° **Lotto della dorsale principale della rete di teleriscaldamento** al servizio della Città di Correggio.

La rete si sviluppa principalmente sotto strada pubblica, ed è energeticamente alimentata da una serie di centrali energetiche di cogenerazione da fonti rinnovabili in corso di esecuzione da parte di En.Cor srl intorno alla città stessa.

I principali utenti di questa prima dorsale principale di rete saranno grandi utenze pubbliche o private di uso pubblico, ma successivamente potranno essere all'acciate tutte le utenze private che ne facciano richiesta ubicate in prossimità della rete stessa.

2. INDIVIDUAZIONE DEL TRACCIATO

La scelta del percorso è riscontrabile nelle tavole allegato al presente progetto definivo – esecutivo.

I criteri considerati nella valutazione dei percorsi possibili e nella individuazione tra questi di quelli più opportuni è stata effettuata sulla base dei seguenti criteri:

- minimizzazione delle lunghezze complessive;
- affidabilità intrinseca della rete in rapporto alla geometria;
- distribuzione del carico termico;
- percorribilità del sottosuolo ed intralci alla viabilità.

Si è cercato quindi di conciliare da un lato le esigenze legate al dimensionamento della rete e all'ottimizzazione dei suoi rendimenti, dall'altro di considerare i problemi legati al periodo di realizzazione dei lavori, con particolare riferimento ai disagi da arrecare alla viabilità pubblica, e alle interferenze con le altre reti.

I punti fissi da cui si è partiti per la stesura definitiva del percorso sono dati:

• dalle centrali energetiche di cui è prevista la realizzazione da parte di En.Cor srl, e che rientrano nell'ambito del Programma Energetico Comunale approvato dal Consiglio Comunale e che alimenteranno la rete con la produzione di energia termica;

• dalle utenze pubbliche che saranno da subito interconnesse alla rete, che costituiranno in un primo tempo i principali utenti del servizio.

In base a tali dati di partenza e applicando i criteri ricordati si è giunti per il primo ed il secondo lotto al disegno della rete costituita da due maglie principali riportata in figura 1.

Figura 1. Tracciato della dorsale principale di rete – l e Il Lotto

3. STIMA DELLA POTENZIALITÀ ENERGETICA DELLE CENTRALI

Come illustrato nel progetto preliminare, la potenzialità di energia termica messa a disposizione della rete del teleriscaldamento dal completamento del progetto di En.Cor srl per la realizzazione di centrali a fonti rinnovabili è illustrata dai dati ripor-

tati nella seguente tabella.

PRODUZIONE DEL DISTRETTO ENERGETICO CORREGGESE								
Impianto	Potenza elettrica	Resa fermica media annua	Potenza termica	Ore di funzionamen- to	Energia elettrica prodotta annua	Energia termica prodotta annua		Energia Termica vendibile annua
	kWe	%	kWt	h	MWhe	MWht	%	MWht
1. EVA								
1.1. Gassificatori	500	100%	500	7,000	3.500	3.500	25%	875
1.2. Olio vegetale 1	420	80%	336	8.000	3.360	2.688	25%	672
1.3. Olio vegetale 2	500	80%	400	8.000	4.000	3.200	25%	800
1.4. Cald. Metano (nº1)		_	1.650	1.400	~	2.310	80%	1.848
2. CAT								
Biogas	1,000	70%	700	8.000	8.000	5.600	25%	1,400
3. VIA FOSSA FAIELLA								
3.1. Biogas	500	70%	350	8.000	4.000	2.800	25%	700
3.2. Gassificatori	600	100%	600	7.000	4.200	4.200	25%	1.050
3,3, Olio vegetale	1.000	80%	800	8.000	8.000	6.400	25%	1,600
4. MANUT. AMBIENTE								
4.1.Olio vegetale	1.000	80%	800	8.000	8.000	6,400	25%	1.600
4.2. Cald. metano	_	_	1.650	1.400	-	2.310	80%	1.848
5. STADIO								
Olio vegetale	1.000	80%	800	8,000	8.000	6.400	25%	1.600
6. ESPANSIONE SUD								
6.1. Gassificatori	600	100%	600	7.000	4.200	4.200	25%	1.050
6.2. Olio vegetale	1.000	80%	800	8.000	8.000	6.400	25%	1.600
7. ZONA INDUSTRIALE				~~~				
Olio vegetale	3.600	80%	2.880	8.000	28,800	23,040	25%	5,760
8. VIA CAMPAGNOLA								
Olio vegetale	1.000	80%	800	8.000	8.000	6,400	25%	1.600
9. VIA FOSDONDO				~~~				
Olio vegetale	2.000	80%	1.600	8.000	16.000	12.800	25%	3.200
10. APEA PRATO								
3.1. Biogas	1,000	70%	700	8.000	8.000	5.600	25%	1,400
3.2. Gassificatori	1.000	100%	1.000	7.000	7.000	7.000	25%	1.750
3.3. Olio vegetale	1.000	80%	800	8.000	8,000	6.400	25%	1.600
3.4. Cald. metano		-	15.000	2.000 -	-	30.000	80%	24.000
11. MANDRIO								
Olio vegetale	500	80%	400	8.000	4.000	3.200	25%	800

11bis. MANDRIO	(privato)								
Biogas		500	70%	350	8.000	4,000	2.800	25%	700
TOTALE GENERALI	Ē	18.720		33.516		147.060	153.648		57.453

Tabella 1. Potenzialità di progetto delle centrali energetiche

Tra le centrali considerate in tabella 1, nel I e II Lotto di realizzazione della dorsale principale della rete saranno collegate le N°1, 2, 3, 4, 5, e 6. La potenza e l'energia disponibili sono pertanto le seguenti:

Impianto	Potenza termica	Energia termica prodotta annua		
	kWt	MWht		
1. EVA	2.886	11.698		
2. CAT	700	5.600		
3. VIA FOSSA FAIELLA	1.750	13.400		
4. MANUT. AMBIENTE	2.450	8.710		
5. STADIO	800	6.400		
6. ESPANSIONE SUD	1.400	10.600		
TOTALE	9.986	101.118		

Tabella 2. Potenzialità termica delle centrali connesse al I e II lotto

4. INDIVIDUAZIONE DELLA TIPOLOGIA DELLA RETE

L'impianto di teleriscaldamento è un sistema chiuso in cui il fluido vettore termico (acqua calda) circola in un impianto chiuso composto da una tubazione di mandata ed una di ritorno.

La struttura della rete tiene conto della dislocazione territoriale delle utenze esistenti ed acquisibili, in base allo sviluppo urbanistico della città.

Vi sono tre diversi tipi di configurazione della rete, a seconda del tipo d'integrazione tra i vari rami della rete, con aumento progressivo di affidabilità: reti ad albero, reti ad anello e reti a maglie (vedi figura 2).

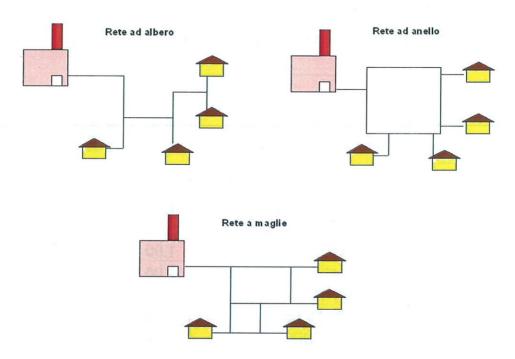


Figura 2 - Tipi di rete di distribuzione del calore

La struttura particolare dell'impianto di Correggio, con la presenza di molti punti di produzione dell'energia termica dislocati nel territorio, ha comportato una scelta quasi "obbligata" per la struttura della rete del tipo magliato.

La maggiore interconnessione data dalla struttura a maglia consente infatti, da una parte, di alimentare tutte le utenze anche in condizioni di "fuori servizio" di una o piu' centrali di produzione, e, dall'altra parte, una maggiore flessibilità per il raggiungimento delle utenze potenziali, al momento solo in parte note.

La scelta del percorso è stata effettuata considerando i seguenti aspetti:

- minimizzazione delle lunghezze complessive;
- affidabilità intrinseca della rete in rapporto alla geometria;
- distribuzione del carico termico;
- percorribilità del sottosuolo ed intralci alla viabilità.

5. DISTRIBUZIONE DEL CARICO TERMICO

Il dimensionamento della rete è stato effettuato sulla base della potenza degli impianti di produzioni esistenti e previsti, indicata nella precedente tabella 2.

Tenendo conto, però, che la centrale EVA è stata predisposta per ospitare una ulteriore caldaia a gas metano di uguale potenzialità (1650 KWt), anche se la stessa non risulta ancora installata si dimensiona già la rete per questa possibile

eventualità.

Le potenze di calcolo divengono pertanto le seguenti:

Impianto	Potenza elettrica	Potenza termica
	MW _e	MW _t
CT1. EVA (N°2 caldaie)	1,42	4,54
CT2. VIA FOSSA FAIELLA	2,10	1,75
CT3. CAT	1,00	0,70
CT5. MANUT. AMBIENTE	1,00	2,45
CT9. ESPANSIONE SUD	1,60	1,40
CT10. PP9 NORD	3,60	2,88
CT11. PP9 SUD	2,00	1,60
CT12. STADIO	1,00	0,80
TOTALE	10,12	16,12

Tabella 3 - Potenza di calcolo della rete

Il carico termico, cioè la posizione delle utenze, è stato determinato con la metodologia che sintetizziamo qui di seguito.

E' stata effettuata una stima della volumetria complessiva degli edifici presenti sul territorio comunale. Per semplificare l'analisi, il territorio è stato suddiviso in n. 31 "macro-utenze", la cui effettiva volumetria e conseguente carico termico, sono stati calcolati sulla base delle seguenti assunzioni:

• potenza termica unitaria:

25 W/m³;

• coefficiente di penetrazione (centro storico):

1/8;

• coefficiente di penetrazione (periferia):

1/16.

La diversa penetrazione ipotizzata è sostanzialmente correlata alla tipologia/dimensioni degli impianti di riscaldamento esistenti. Per semplicità inoltre, la potenza termica unitaria assunta è quella relativa ad utenze di tipo civile, a solo uso riscaldamento.

Nella tabella seguente sono riassunte le caratteristiche relative a ciascuna "macro-utenza":

			VOLUMETRIA	POTENZA
			m³	kW
	U	1	26800	670
	U	2	16800	420

U 3	16320	408
U 4	58560	1464
U 5	21760	544
U 6	30400	760
U 7	28640	716
U 8	12800	320
U 9	13240	331
U 10	5920	148
U 11	7840	196
U 12	17440	436
U 13	12000	300
U 14	3200	80
U 15	14080	352
U 16	32000	800
U 17	82560	2064
U 18	10560	264
U 19	14240	356
U 20	12800	320
U 21	3520	88
U 22	7840	196
U 23	11200	280
U 24	11200	280
U 25	11200	280
U 26	11200	280
U 27	17600	440
U 28	25920	648
U 29	16640	416
U 30	18400	460
U 31	4160	104
totali	576840	14421

Tabella 4 - Potenza termica delle macro-utenze

6. DIMENSIONAMENTO IDRAULICO E SCELTA DEI DIAMETRI

Una volta stabilito il percorso ottimale, il problema della scelta dei diametri ottimali si riconduce fondamentalmente al semplice criterio del minimo costo complessivo della rete, ottenuto sommando il costo di investimento della tubazione, il costo per l'energia di pompaggio e il costo dovuto alla perdita di calore.

Per ciascuna portata esaminata, transitante nel tratto dell'impianto in esame, è possibile determinare il diametro commerciale che minimizza tale valore.

Inoltre deve essere rispettato il vincolo per cui la velocità del fluido che si viene a stabilire nella tubazione non superi, in alcuna condizione di carico, un valore

prefissato.

Questo valore, dipendente dal diametro, rappresenta la velocità limite del fluido al di sopra della quale si possono presentare fenomeni indesiderati in termini idraulici, acustici o di erosione del materiale.

Tale valore limite viene determinato mediante considerazioni ingegneristiche e costituisce pertanto un dato di input nella risoluzione di questo problema.

Questa procedura, ripetuta per l'intero spettro di portate possibili da luogo, per ogni diametro commerciale, all'individuazione di un intervallo di portata entro cui questo diametro risulta economicamente ottimale.

Una volta nota la relazione portata-diametro ottimale, risulta semplice attribuire ad ogni tronco di rete il giusto dimensionamento.

Per gli impianti di teleriscaldamento, tale relazione porta ad un valore di perdita di carico distribuita compresa fra 100 e 150 Pa/m.

Nel nostro caso sono stati assunti i seguenti parametri:

• temperatura mandata:

90 °C:

• temperatura ritorno:

60 °C;

• perdite di carico distribuite:

100 Pa/m.

Trattandosi di una rete magliata, la scelta del diametro di ciascun lato della maglia è stata inoltre basato sul criterio di permettere la distribuzione del vettore termico a tutte le utenze con valori di velocità accettabili anche in caso d'interruzione di uno dei rami della maglia, oltre ad assicurare alla rete la possibilità di poter servire ulteriori utenze, non considerate al momento.

Infatti, considerando la potenza termica complessiva disponibile dagli impianti di produzione, pari a circa 16 MW (vedi tabella 1), ed un fattore di contemporaneità pari a 0.8 per le 31 macro-utenze, <u>la potenza termica residua disponibile</u> è pari a circa 4,5 MW.

Nella figura 3 è rappresentato lo schema idraulico previsto, con indicato il diametro dei vari lati delle maglie, la posizione delle centrali di produzione (in giallo) e delle macro utenze.

Come si nota, sulla rete principale è previsto uno stacco di derivazione per ogni macro utenza, di diametro tale da fornire la potenza complessiva della "macro-utenza".

Su tale tratto derivato verranno poi realizzati gli stacchi per l'allacciamento delle singole utenze.

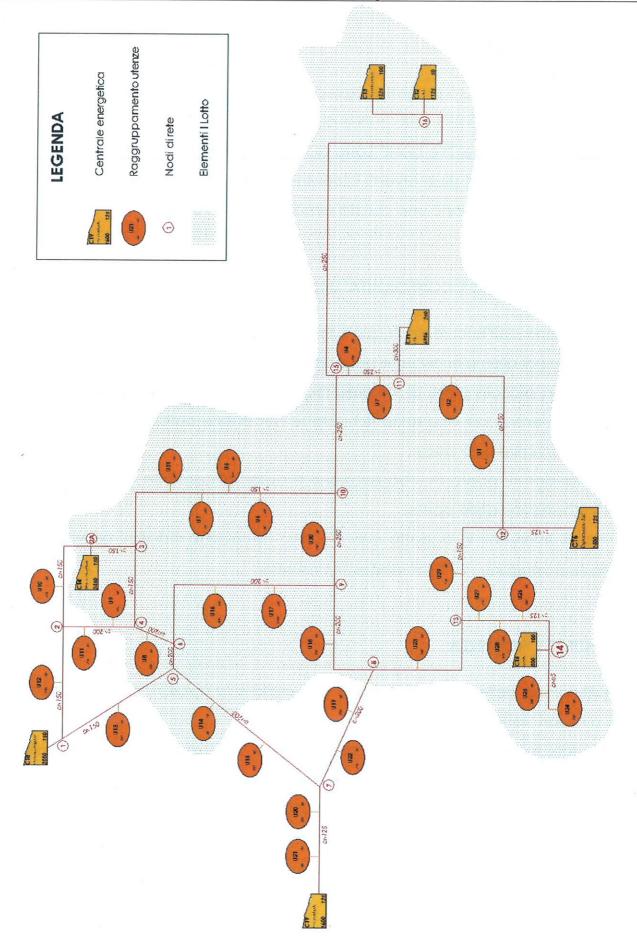


Figura 3 – Schema idraulico della rete

7- TEMPI DELL'INTERVENTO

La realizzazione dell'intero progetto prevede la realizzazione di più lotti funzionali di cui, il primo, suddiviso a sua volta in due distinti stralci.

Per l'aggiudicazione del 1° e del 11° Lotto di lavori è prevista la realizzazione di una gara d'appalto per cui gli interventi inizieranno nella primavera 2010 e, dovendo procedere per fasi, avranno una durata stimata in circa 700 gg..

8 - DISPONIBILITA' AREE E CONFORMITA' URBANISTICA

La realizzazione dell'intervento è quasi esclusivamente su strade di proprietà comunale e quindi aree pienamente disponibili.

Solo una piccola parte di tali aree risultano aree a verde o su strade di proprietà di altri enti a cui andranno richieste le necessarie autorizzazioni preventive prima di intervenire sulle stesse.

Trattandosi di opere di urbanizzazione è automaticamente acquisita la conformità urbanistica delle opere.

Per gli interventi in oggetto non risultano necessarie indagini geologiche in quanto non vengono realizzati interventi strutturali.

9 - CANTIERE E SICUREZZA

La realizzazione delle opere in oggetto comporterà la chiusura o la limitazione di traffico di vari tratti stradali.

Per tale motivo sarà necessario procedere per fasi, garantendo la necessaria viabilità alternativa ed assicurando l'accessibilità ai residenti.

Soprattutto per garantire quest'ultima necessità sarà necessario prevedere una capillare campagna informativa nelle zone oggetto dell'intervento.

Non esistono particolari rischi nella realizzazione degli scavi trattandosi, in genere di scavi di profondità inferiore a mt.2.

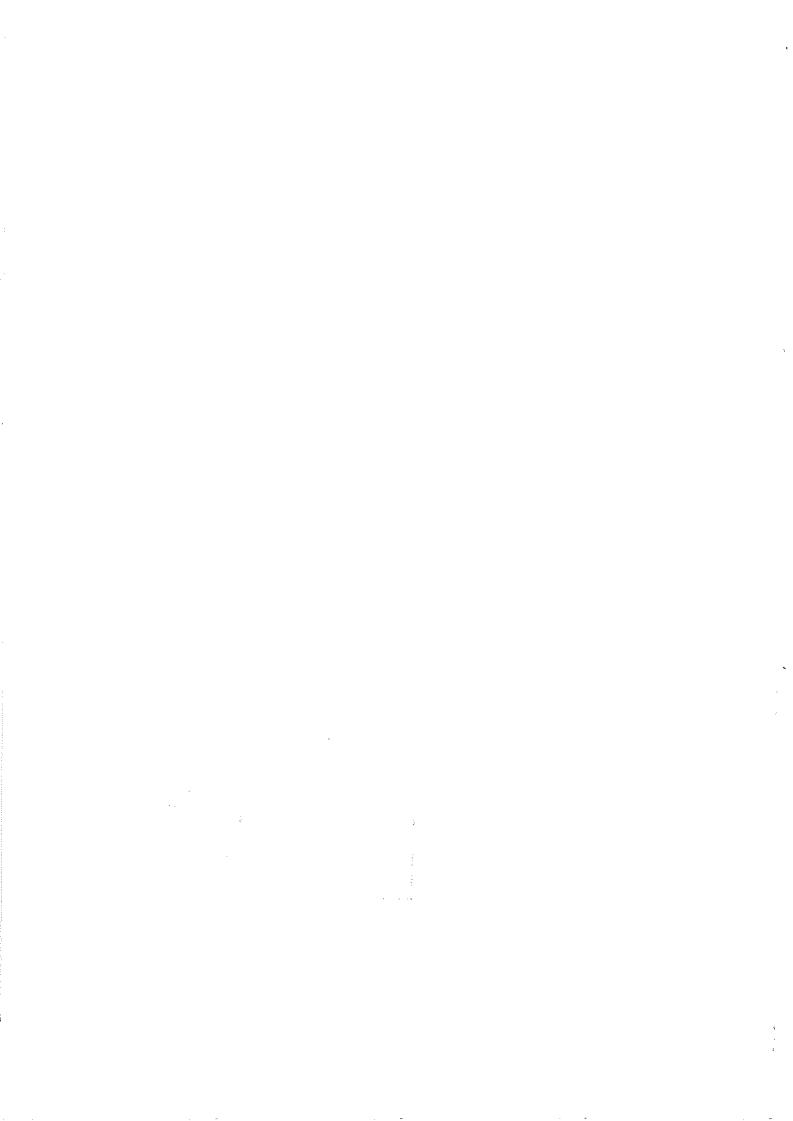
Risulterà invece necessario avere chiara la maglia delle reti di sottoservizi interferenti con i vari tratti in esecuzione, per cui in fase esecutiva verrà individuata una prima fase dove tutti gli enti titolari dei vari sottoservizi indicheranno chiaramente il tracciato e la quota delle loro reti direttamente all'impresa esecutrice.

Alla luce di tali indicazioni verrà determinata la quota di minor impatto delle infrastrutture. La rete di teleriscaldamento infatti, essendo in pressione, può posizionarsi a qualunque quota, preferibilmente tra 100 e 150 cm dal piano di calpestio, al fine di restare immersa nelle acque di falda il minimo possibile.

Il materiale recuperato dagli scavi sarà prevalentemente di 3 tipi:

- asfalti;
- inerte
- terreno.

Per quanto possibile il materiale di scavo sarà recuperato nell'ambito del cantiere: l'asfalto derivante dalla fresatura della strada sarà rigenerato e riutilizzato per la successiva riasfaltatura; il materiale terroso essendo prevalentemente argilloso sarà stabilizzato a calce e riutilizzato a strati per sottofondo ed il materiale inerte sarà miscelato a cemento creando una sorta di misto cementato in situ.


Il poco materiale eccedente sarà portato in discarica autorizzata.

Al fine di agevolare le suddette operazioni di cantiere e garantire le condizioni minime di sicurezza dei lavoratori viene individuata un area di cantiere e stoccaggio dei materiali, nei pressi della tangenziale sud di Correggio.

In tali aree verranno installate le necessarie baracche di cantiere, le aree di deposito e tutte le lavorazioni preliminari necessarie per il cantiere, nonché gli stoccaggi provvisori di materiali e/o inerti da utilizzare nell'ambito del cantiere o da avviare allo smaltimento se non necessari nel cantiere.

Il Progettista

Ing. Davide Vezzani

