DOTT. GEOL. GIUSTI ARRIGO 42019 SCANDIANO (R.E.) - VIA CESARI, 18 TEL. (0522) 984819 - (348) 9109596 www.geogiusti.it arrigogiusti@alice.it

COMUNE DI CORREGGIO (Provincia di Reggio nell'Emilia)

LOCALITÀ: VIA ERBOSA, 2 - LEMIZZONE

RISTRUTTURAZIONE CON DEMOLIZIONE E RICOSTRUZIONE DI UN FABBRICATO RESIDENZIALE

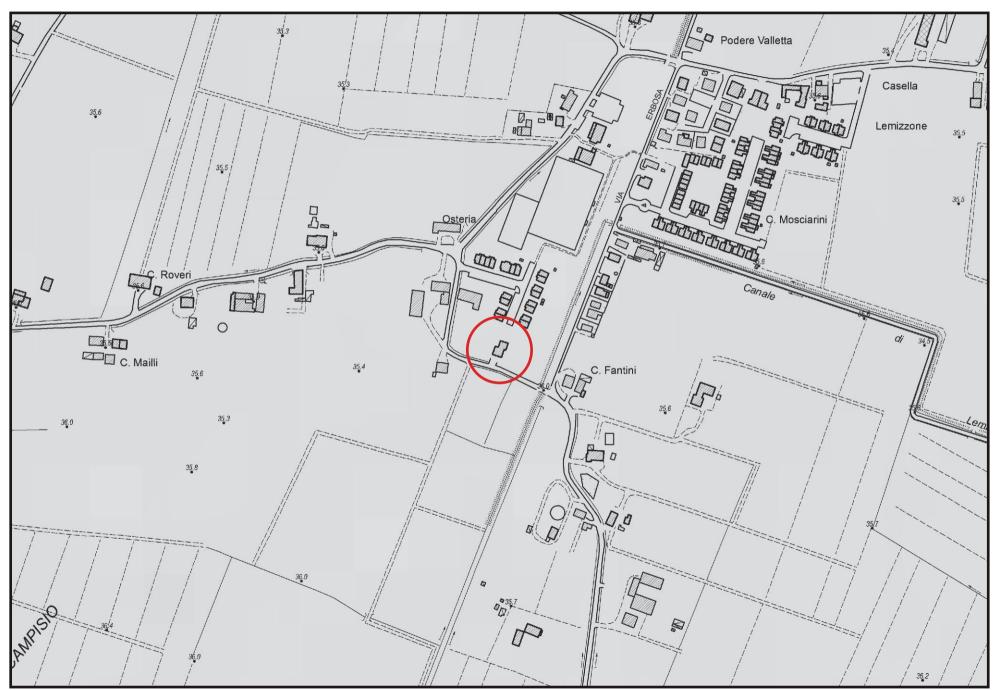
COMMITTENTE: SONCINI MAURO - BERSELLI GRAZIELLA

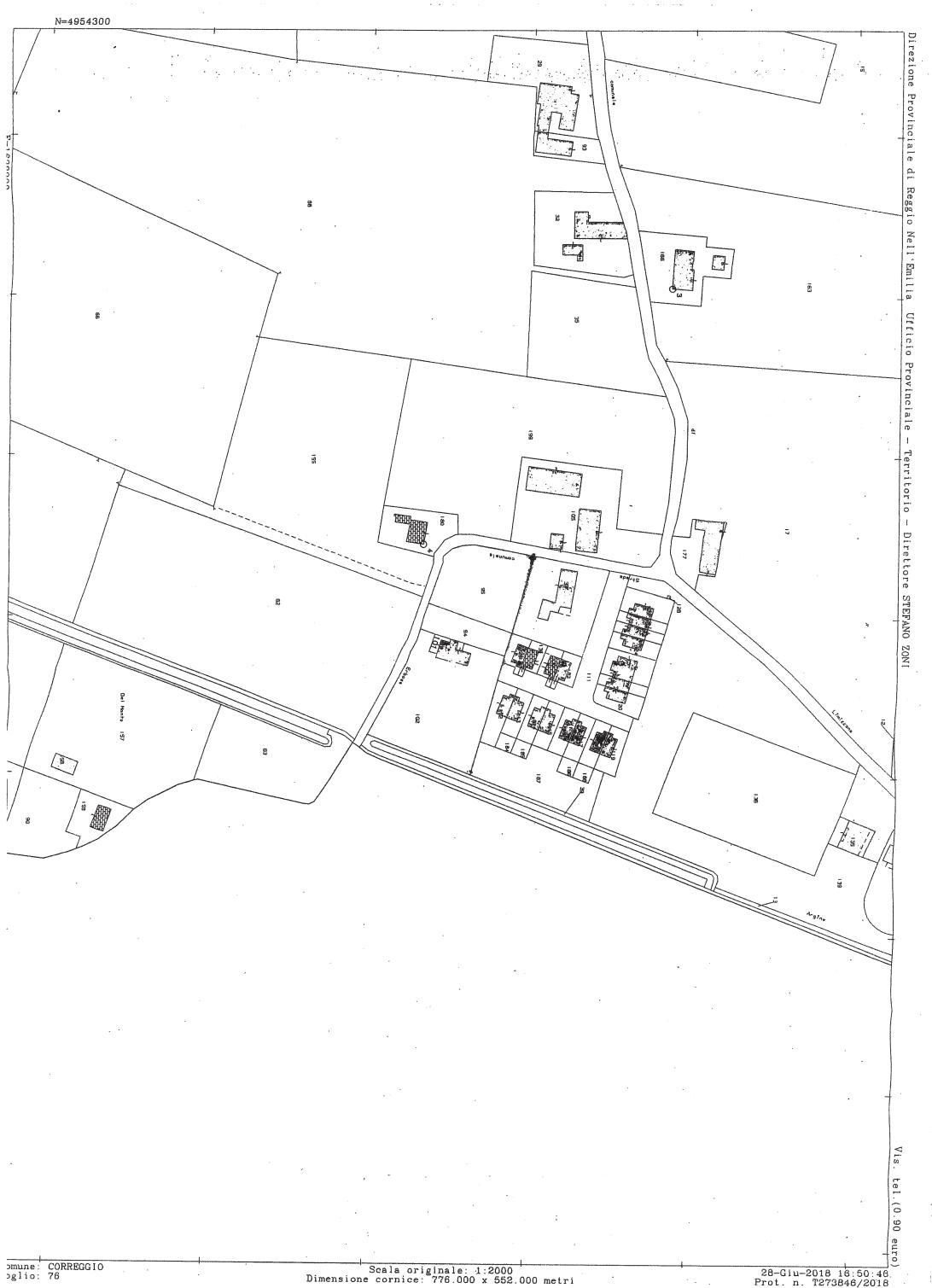
RELAZIONE GEOLOGICA E PERICOLOSITÀ SISMICA DI BASE

Con riferimento agli accordi intercorsi con il Geom. Lorenzo Cattani di Prato di Correggio (RE), trasmetto la presente relazione geologica e sulla pericolosità sismica di base atta a definire le caratteristiche geomeccaniche e sismiche di un terreno, sito in Lemizzone di Correggio (RE), su cui è in progetto la ristrutturazione mediante demolizione e ricostruzione di un fabbricato residenziale. (Foglio n° 76 – mappali n° 94 - 95 - 101 - 102)

MORFOLOGIA, PEDOLOGIA E CARATTERISTICHE CLIMATICHE

L'area in oggetto di studio, posta alla quota media di 36 m s.l.m., è ubicata a SO della Chiesa e del nucleo storico di Lemizzone.


Più precisamente, il terreno in esame, su cui preesiste il fabbricato oggetto d'intervento, è sito a SE di Osteria, ad occidente del Cavo Argine e di C. Fantini, a valle di Via Erbosa, da cui si accede tramite un viottolo privato (cf. stralci dalla C.T.R. in scala 1:5.000 elementi n° 201051 – Case Matte e 201064 - San Martino in Rio, estratto di planimetria catastale in scala 1:2000 nonché ortofoto proposta sul frontespizio).


I suoli tipici di questa Unità Idrogeologica, in parte asportati dal precedente intervento edilizio e, nelle aree cortilive perimetrali al preesistente edificio, ricoperti da una coltre di riporto di modesto spessore, appartengono all'associazione dei "suoli alluvionali". Si tratta di entisuoli, generalmente calcarei e sub alcalini, a prevalente tessitura limo-sabbiosa. L'utilizzo prevalente è a seminativo; la potenzialità, piuttosto elevata, è limitata solamente dalla tessitura particolarmente fine.

Il regime pluviometrico della zona è di tipo continentale. Il valore medio annuo delle precipitazioni è di 683 mm con punte massime di piovosità in primavera (184 mm) ed in autunno (187 mm).

STRALCIO DALLA C.T.R. IN SCALA 1: 5000

Elementi n° 201051 - Case Matte e n° 201064 - San Martino in Rio

La temperatura media mensile annua è di 12.7 °C, con valori medi massimi di 29.8 °C, per il mese di luglio, e minimi di - 2.3 °C, per il mese di gennaio. L'escursione annua è quindi di 32.1 °C.

INQUADRAMENTO TETTONICO E CENNI DI GEOLITOLOGIA

L'intero territorio del Comune risulta compreso nel bacino subsidente pliocenico-quaternario della Pianura Padana, costituito da un'ampia depressione a stile compressivo colmata da sedimenti mesozoici, terziari e quaternari.

I litotipi che compongono il primo sottosuolo, in relazione alle evoluzioni idrografiche di fiumi e torrenti, hanno un andamento lentiforme, discontinuo, con passaggi laterali e verticali da una componente granulometrica all'altra più o meno graduali.

Dal punto di vista stratigrafico, il territorio in esame si presenta quindi di una complessità non trascurabile dovuta a migrazioni di fiumi e torrenti, al costipamento differenziato dei sedimenti fluviali, nonché al massiccio intervento antropico volto alla regimazione dei corsi d'acqua, con tutta una serie di deviazioni, canalizzazioni e bonifiche.

Consultando la cartografia geologica ufficiale, si può facilmente notare come il territorio in esame si trovi a SE dell'asse di un'anticlinale sepolta che, con direzione SW/NE, costituisce le ultime propaggini della dorsale ferrarese.

In questa località l'Agip Mineraria ha effettuato una serie di trivellazioni per la ricerca di idrocarburi il più profondo dei quali raggiunge i 2605 m di profondità.

I dati forniti da queste indagini hanno consentito di quantificare lo spessore dei sedimenti e delle alluvioni quaternarie in circa 1000 m tuttavia, secondo quanto riportato dal "Rilevamento-studio delle risorse idriche sotterranee nel territorio della provincia di Reggio Emilia", edito dall'Amministrazione provinciale, il limite effettivo delle conoscenze stratigrafiche è di 220 m dal piano campagna.

Utilizzando una sezione riportata nello studio in precedenza citato, si nota che, a intervalli regolari, abbiamo numerosi livelli sabbiosi che si alternano alla prevalente massa limo-argillosa.

Caratteristica principale di questi sedimenti è infatti la prevalenza di materiali limo-argillosi rispetto a quelli permeabili.

La carta geologica del Servizio Geologico d'Italia (Foglio n° 74 - Reggio nell'Emilia), evidenzia come il territorio in esame si caratterizzi per la presenza, in superficie, di alluvioni oloceniche prevalentemente argillose.

In sintonia con questa classificazione, la "Carta della litologia di superficie" in scala 1 : 25.000 proposta in allegato evidenzia che l'area in esame ricade su "depositi prevalentemente limosi con lenti sabbiose in subordine" che verso settentrione sfumano in "depositi prevalentemente argillosi o argilloso-limosi", entrambi di età olocenica.

Le prove penetrometriche statiche, appositamente effettuate per accertare la reale natura del primo sottosuolo, hanno accertato che nei primi metri vi sono in prevalenza argille ad elevata componente organica e torbosa. Da 3.5÷4 m sino a circa 8÷10.5 m, in sintonia con le indicazioni della "Carta della litologia di superficie", il deposito si caratterizza invece per una preponderanza di limi sabbiosi, sabbie limose e sabbie in modesta matrice limo argillosa. Oltre, sino alla profondità di 18 m, vi sono nuovamente in prevalenza argille a cui si alternano sottili livelli di limi sabbiosi, sabbie limose e sabbie.

CARTA DELLA LITOLOGIA DI SUPERFICIE

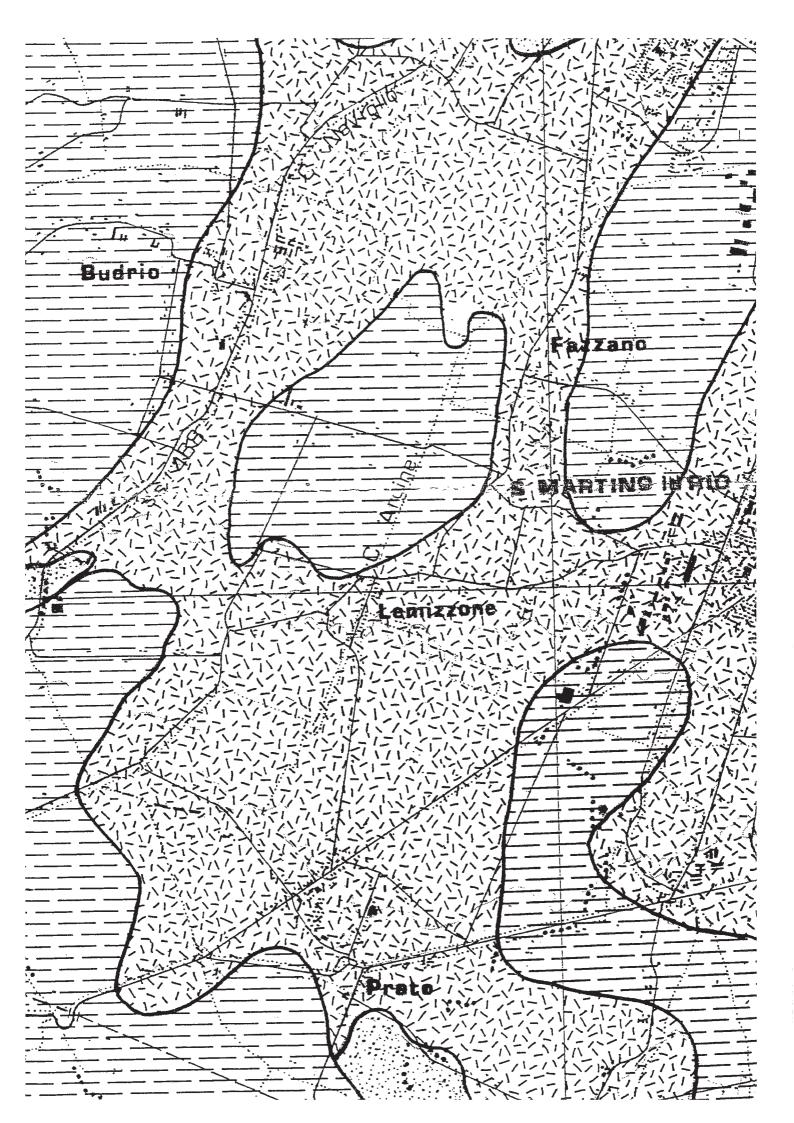
(SCALA 1:25.000)

LEGENDA

Depositi prevalentemente argillosi o argilloso-limosi. Dlocene

Depositi prevalentemente limosi con lenti sabbiose in subordine. Olocene

Depositi prevalentemente sabbiosi, con scarse lenti di ghiaie fini e/o di limi. Pleistocene sup.-Olocene


Depositi di ghiaie eterometriche alternati a livelli con granulometria piu' fine. Pleistocene sup. (Wurm)-Olocene

Ghiaie grossolane debolmente cementate con lenti di sabbie e limi sabbiosi. Limi eolici (Loess) dell' altopiano del Ghiardo. Riss

Conglomerati sabbioso-arenacei con clasti alterati. Mindel

METODOLOGIA D'INDAGINE

Le caratteristiche geomeccaniche del terreno vengono determinate sulla base dei dati acquisiti con due prove penetrometriche. Le penetrometrie sono state eseguite utilizzando un penetrometro statico tipo GOUDA da 10 t. La prova penetrometrica statica CPT (di tipo meccanico) consiste essenzialmente nella misura della resistenza alla penetrazione di una punta meccanica di dimensioni e caratteristiche standardizzate, infissa nel terreno a velocità costante (v = 2 cm/sec ± 0.5 cm/sec). La penetrazione avviene attraverso un dispositivo di spinta (martinetto idraulico) opportunamente ancorato al suolo (ovvero zavorrato), che agisce su una batteria doppia di aste (aste esterne cave e aste interne piene coassiali), alla cui estremità inferiore è collegata la punta.

Lo sforzo necessario per l'infissione viene determinato a mezzo di un opportuno sistema di misura, collegato al martinetto idraulico.

La punta conica (di tipo telescopico) è dotata di un manicotto sovrastante per la misura all'attrito laterale (punta/manicotto tipo "Begemann").

Le dimensioni della punta/manicotto sono standardizzate, e precisamente:

- diametro di base del cono $\phi = 35.7 \text{ mm}$
- area della punta conica $Ap = 10 \text{ cm}^2$
- angolo apertura del cono $\alpha = 60^{\circ}$
- superficie laterale del manicotto $m = 150 \text{ cm}^2$

Sulla batteria di aste esterne può essere installato un anello allargatore per diminuire l'attrito sulle aste, facilitandone l'approfondimento.

Nei diagrammi e tabelle allegate sono riportati i seguenti valori di resistenza (rilevati dalle letture di campagna, durante l'infissione dello strumento):

- $Rp(Kg/cm^2)$ = resistenza alla punta (conica)
- RL (Kg/cm²) = resistenza laterale (manicotto)

(la resistenza alla punta Rp e la resistenza laterale RL sono rilevate a intervalli regolari di 20 cm).

Oltre all'elaborazione dei valori di resistenza del sottosuolo, vengono fornite utili informazioni per il riconoscimento di massima dei terreni attraversati, in base al rapporto Rp/RL fra la resistenza alla punta e la resistenza laterale del penetrometro (Begemann 1965 - Raccomandazioni A.G.I. 1977), ovvero in base ai valori di Rp e del rapporto FR = (RL/Rp) % (esperienze di Schmertmann -1978). Sempre con riferimento alle prove penetrometriche statiche CPT, nelle tavole allegate sono riportate indicazioni concernenti i principali parametri geotecnici (coesione non drenata Cu, angolo di attrito interno efficace \(\phi', \) densità relativa Dr, modulo edometrico Mo, moduli di deformazione non drenato Eu e drenato E', peso di volume Y, ecc.).

CARATTERISTICHE LITOLOGICHE E PARAMETRI GEOTECNICI

Per ogni indagine sono stati individuati i vari strati a cui si attribuiscono le caratteristiche litologiche ed i parametri geotecnici caratteristici:

PROVA PENETROMETRICA CPT1

Livello A

Strato che dal piano cortilivo, annettendo la coltre di riporto ed il sottostante terreno vegetale, si approfondisce sino a 4 m in argille ad elevata componente organica e torbosa con sottili livelli di limi sabbiosi, con valori di:

$$\gamma = 1.85 \text{ t/m}^3 = 18.14 \text{ kN/m}^3$$

$$\gamma_{sat} = 1.95 \text{ t/m}^3 = 19.12 \text{ kN/m}^3$$

$$Cu = 0.6 \text{ kg/cm}^2 = 58.83 \text{ kPa}$$

$$c' = 0.1 \text{ kg/cm}^2 = 9.81 \text{ kPa}$$

$$\phi' = 18 \text{ [°]}$$

$$Mo = 60 \text{ kg/cm}^2 = 5883 \text{ kPa}$$

$$Mo = 60 \text{ kg/cm}^2 = 5883 \text{ kPa}$$

$$E = 50 \text{ kg/cm}^2 = 4903 \text{ kPa}$$

Livello B

Da 4 m a 10.5 m vi sono sabbie limose e sabbie in matrice limo argillosa, con valori di:

$$\gamma = 1.90 \text{ t/m}^3 = 18.63 \text{ kN/m}^3$$
 per la natura granulare $\gamma = 1.85 \text{ t/m}^3 = 18.14 \text{ kN/m}^3$ per la natura coesiva $\gamma_{\text{sat}} = 1.95 \text{ t/m}^3 = 19.12 \text{ kN/m}^3$ per la natura granulare $\gamma_{\text{sat}} = 1.95 \text{ t/m}^3 = 19.12 \text{ kN/m}^3$ per la natura granulare per la natura coesiva $\gamma_{\text{sat}} = 1.95 \text{ t/m}^3 = 19.12 \text{ kN/m}^3$ per la natura granulare per la natura coesiva $\gamma_{\text{sat}} = 1.95 \text{ t/m}^3 = 19.12 \text{ kN/m}^3$ per la natura granulare per la natura granulare per la natura coesiva $\gamma_{\text{sat}} = 0.5 \text{ kg/cm}^2 = 0 \text{ kPa}$ per la natura granulare per la natura granulare per la natura coesiva $\gamma_{\text{sat}} = 0.1 \text{ kg/cm}^2 = 9.81 \text{ kPa}$ per la natura granulare per la natura coesiva $\gamma_{\text{sat}} = 0.1 \text{ kg/cm}^2 = 6864 \text{ kPa}$ per la natura granulare per la natura coesiva $\gamma_{\text{sat}} = 0.1 \text{ kg/cm}^2 = 6864 \text{ kPa}$ per la natura granulare per la natura coesiva per la natura granulare per la natura coesiva per la natura coesiva

Livello C

Oltre 10.5 m vi sono argille ed argille sabbioso limose con sottili livelli di limi sabbiosi, sabbie limose e sabbie, con valori di:

$$\gamma = 1.9 \text{ t/m}^3 = 18.63 \text{ kN/m}^3$$
 $\gamma_{sat} = 2.0 \text{ t/m}^3 = 19.61 \text{ kN/m}^3$
 $Cu = 0.9 \text{ kg/cm}^2 = 88.25 \text{ kPa}$
 $c' = 0.2 \text{ kg/cm}^2 = 19.61 \text{ kPa}$
 $\phi' = 22 \text{ [°]}$
 $Mo = 80 \text{ kg/cm}^2 = 7845 \text{ kPa}$
 $E = 70 \text{ kg/cm}^2 = 6864 \text{ kPa}$

PROVA PENETROMETRICA CPT2

Livello A

Strato che dal piano cortilivo, annettendo la coltre di riporto ed il sottostante terreno vegetale, si approfondisce sino a 3.5 m in argille ad elevata componente organica e torbosa con sottili livelli di limi sabbiosi, con valori di:

$$\gamma = 1.85 \text{ t/m}^3 = 18.14 \text{ kN/m}^3$$

$$\gamma_{\text{sat}} = 1.95 \text{ t/m}^3 = 19.12 \text{ kN/m}^3$$

$$Cu = 0.6 \text{ kg/cm}^2 = 58.83 \text{ kPa}$$

$$c' = 0.1 \text{ kg/cm}^2 = 9.81 \text{ kPa}$$

$$\phi' = 18 \circ$$

$$Mo = 60 \text{ kg/cm}^2 = 5883 \text{ kPa}$$

$$E = 50 \text{ kg/cm}^2 = 4903 \text{ kPa}$$

Livello B

Da 3.5 m sino a 6 vi sono argille talora ad elevata componente organica, con valori di:

$$\gamma = 1.85 \text{ t/m}^3 = 18.14 \text{ kN/m}^3$$

$$\gamma_{sat} = 1.95 \text{ t/m}^3 = 19.12 \text{ kN/m}^3$$

$$Cu = 0.4 \text{ kg/cm}^2 = 39.22 \text{ kPa}$$

$$c' = 0.08 \text{ kg/cm}^2 = 7.84 \text{ kPa}$$

$$Mo = 40 \text{ kg/cm}^2 = 3922 \text{ kPa}$$

$$E = 30 \text{ kg/cm}^2 = 2942 \text{ kPa}$$

<u>Livello C</u>

Da 6 m a 8 m vi sono sabbie limose e sabbie in scarsa matrice limo argillosa, con valori di:

$$\gamma = 1.90 \text{ t/m}^3 = 18.63 \text{ kN/m}^3$$

$$\gamma_{sat} = 1.95 \text{ t/m}^3 = 19.12 \text{ kN/m}^3$$

$$Cu = 0 \text{ kg/cm}^2 = 0 \text{ kPa}$$

$$c' = 0 \text{ kg/cm}^2 = 0 \text{ kPa}$$

$$\phi' = 25 \circ 7$$

$$Mo = 70 \text{ kg/cm}^2 = 6864 \text{ kPa}$$

$$E = 60 \text{ kg/cm}^2 = 5883 \text{ kPa}$$

<u>Livello D</u>

Oltre 8 m vi sono argille ed argille sabbioso limose con sottili livelli di limi sabbiosi, sabbie limose e sabbie, con valori di:

$$\gamma = 1.9 \text{ t/m}^3 = 18.63 \text{ kN/m}^3$$

$$\gamma_{\text{sat}} = 2.0 \text{ t/m}^3 = 19.61 \text{ kN/m}^3$$

$$Cu = 0.9 \text{ kg/cm}^2 = 88.25 \text{ kPa}$$

$$c' = 0.2 \text{ kg/cm}^2 = 19.61 \text{ kPa}$$

$$\phi' = 22 [\circ]$$

$$Mo = 80 \text{ kg/cm}^2 = 7845 \text{ kPa}$$

$$E = 70 \text{ kg/cm}^2 = 6864 \text{ kPa}$$

dove:

 γ = peso di volume; γ_{sat} = peso di volume saturo;

Cu = coesione non drenata; c' = coesione efficace;

 ϕ' = angolo di attrito;

Mo = modulo edometrico; E = modulo elastico.

INQUADRAMENTO IDROGEOLOGICO

L'acquifero che si rinviene nel territorio del Comune di Correggio (RE) è ascrivibile all'Unità Idrogeologica della Media Pianura.

In realtà, quest'ultima è costituita da un insieme di unità idrogeologiche appenniniche, malamente individuabili e suddividibili, che possono essere accumunate in un'unica unità dalle caratteristiche abbastanza omogenee.

I limiti territoriali di questa zona sono infatti molto sfumati verso sud mentre sono abbastanza netti verso nord, a confine con l'Unità idrogeologica del Po.

La caratteristica principale di questa unità è la prevalenza di materiali limo-argillosi impermeabili rispetto a quelli permeabili: si tratta pertanto di una zona povera di acque sotterranee.

I materiali permeabili, acquiferi, sono rappresentati da sabbie (le ghiaie sono quasi assenti) in lenti sottili e discontinue. L'alimentazione delle falde è ancora di provenienza appenninica, dalle falde delle conoidi dell'Enza, del Secchia e dei corsi d'acqua minori; l'infiltrazione diretta, dal suolo, è invece molto limitata.

È altresì accertato che, a profondità superiori ai 300 metri, le falde hanno spessore e continuità maggiore, ma cambia sensibilmente il chimismo dell'acqua.

IDROGEOLOGIA LOCALE

I numerosi dati acquisiti con perforazioni per pozzi idrici e sondaggi geognostici effettuati nel territorio hanno consentito di ricostruire, per i primi 220 metri, la serie idrogeologica locale.

La serie è stata ricreata nell'ambito di studi territoriali quali il "Rilevamento-studio delle risorse idriche sotterranee nel territorio della provincia di Reggio Emilia" - Edito dall'Amministrazione Provinciale di Reggio Emilia e lo "Studio geologico del territorio di media pianura: Comprensorio Carpi-Correggio".

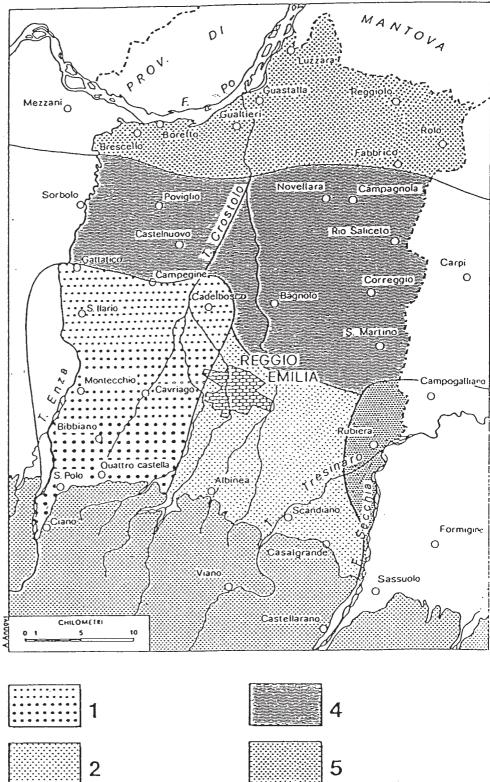
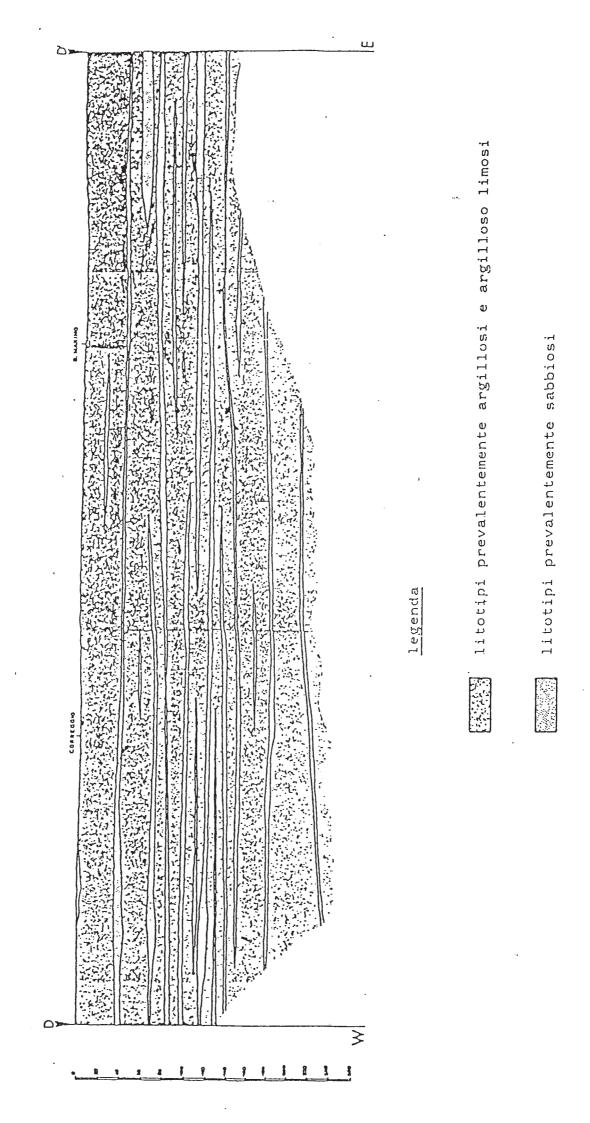


Figura 1) - Distribuzione delle unità idrogeologiche della pianura reggiana: 1) Unità idrogeologica del T.Enza; 2) Unità idrogeologica dei corsi d'acqua minori; 3) Unità idrogeologica del F.Secchia; 4) Unità idrogeologica della media pianura; 5) Unità idrogeologica del F.Po; 6) Terreni impermeabili del margine appenninico che delimitano a sud i bacini idrici sotterranci.


L'elaborato è tratto da "Indagine sullo stato delle acque sotterranee della pianura reggiana"; 1988 - Amministrazio ne Provinciale di Reggio nell'Emilia

Come in precedenza accennato, nel territorio in esame, l'acquifero si caratterizza per l'alternanza di litotipi argillosi e argilloso-limosi con frequenti lenti di sabbia.

La serie può essere così sintetizzata:

- a) orizzonte a litologia variabile, della potenza di 15-20 metri, costituito da un'alternanza di livelli lentiformi formati da argille, torbe e sabbie medio-fini talvolta affioranti; all'interno del suddetto orizzonte è sempre presente, in livelli sabbiosi di paleoalveo a struttura spiccatamente lentiforme, l'acquifero freatico direttamente interessato da ricarica per infiltrazione dalla superficie;
- b) unità sostanzialmente impermeabile formata prevalentemente da limi e argille potenza da 15 a 30 m;
- c) orizzonte permeabile, formato da sabbie fini, avente uno spessore variabile tra 3 e 6 m, che di solito si riscontra tra -35 e -45 m dal p.c.; è questo il primo acquifero artesiano che è tuttavia permeato da acque di qualità scadente;
- d) complesso impermeabile, dello spessore di 20/40 m, formato da livelli argillosi più o meno limosi con locali intercalazioni sabbioso fini limose;
- e) livello sostanzialmente sabbioso, della potenza di 3/6 metri, rinvenibile mediamente tra -60 e -80 m dal p.c., permeato da acque dolci;
- f) orizzonte impermeabile, della potenza di 25/35 m, che si riscontra tra -80 e -110 m dal p.c., che ingloba lenti sabbiose sabbioso fini;
- g) unità permeabile sostanzialmente sabbiosa, della potenza di 2/5 m, rilevabile tra 90 e 120 m dal p.c.;
- h) insieme impermeabile, prevalentemente argilloso limoso, posto generalmente tra 120 e 160 m dal p.c.;
- i) livello permeabile, avente uno spessore medio di cinque metri, posto tra 160 e 190 metri dal p.c.;
- l) insieme impermeabile, prevalentemente argilloso limoso, avente uno spessore di 20/30 m, posto tra 180 e 210 m dal p.c.;

L'elaborato è tratto da "Studio geologico del territorio di media pianura: Comprensorio Carpi -Correggio"

m) livello permeabile, in litotipi prevalentemente sabbiosi, avente uno spessore di 3/8 m, posizionato tra 190 e 220 m dal p.c.

Come è facilmente intuibile, tale schematizzazione è puramente indicativa, vista l'estrema variabilità laterale e verticale dei depositi in esame.

IDROGEOLOGIA DELLA FALDA FREATICA

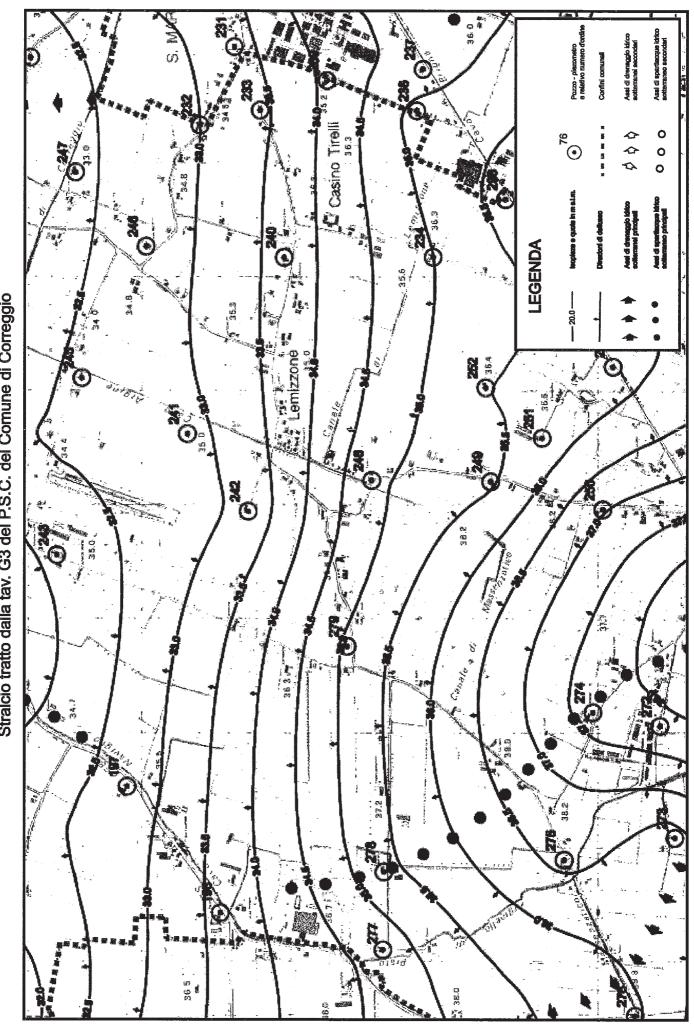
Come in precedenza evidenziato, sul territorio sono stati effettuati numerosi studi che, tra l'altro, si sono proposti di ricostruire, in dettaglio, l'assetto idrogeologico della falda freatica.

La morfologia della superficie freatica è stata pertanto desunta da rilevazioni del livello statico in pozzi a grande diametro.

In tal senso, il Prof. Maurizio Pellegrini, all'epoca Ordinario di Geologia Applicata presso l'Università degli Studi di Modena, nell'indagine geologico-ambientale allegata alla Variante Generale al P.R.G., riprendendo studi precedenti effettuati dal Prof. Sergio Tagliavini, per decenni docente di geologia dell'Università degli Studi di Parma, afferma che "Dalla morfologia della superficie freatica, possiamo notare che questa coincide con l'andamento della superficie topografica e presenta quindi un andamento complessivamente Sud/Ovest-Nord/Est, caratteristico di questo tratto della media pianura. I gradienti idraulici sono molto bassi e oscillano attorno a valori dell'1-3%".

In effetti, la conformazione della falda freatica, oltre che dall'assetto topografico, è condizionata dall'andamento del substrato impermeabile, dai valori di trasmissività dell'acquifero, dal reticolo idrografico superficiale e dai terreni affioranti al piano campagna.

Nel territorio il deflusso delle acque presenta un andamento prevalente da sud verso nord in direzione di un'asse di drenaggio idrico sotterraneo principale che lambisce la periferia sud-orientale dell'abitato di Correggio.


Come si evince dalla carta delle isopieze freatiche, tratta dalla tav. G3 del P.S.C. del Comune di Correggio, si osserva poi che l'area in esame ricade ad oriente di uno spartiacque idrico sotterraneo principale (cf. stralcio in allegato).

In carta, il lotto ricade tra le isopieze 35 e 34.5 m s.l.m., da cui si ricava una profondità della falda di circa 1÷1.5 m dalla quota del piano campagna mentre al termine delle penetrometrie, nei fori di sonda, è stata misurata a 2.7 m dal piano cortilivo.

Pur non segnalando le carte tematiche, in tutto il territorio del Comune di Correggio, sostanziali variazioni nel tempo dell'assetto idrogeologico sotterraneo (cf. figura 2 in allegato tratta da "Indagine sullo stato delle acque sotterranee della pianura reggiana) è del resto giustificata, nel corso dell'anno, una variabilità stagionale. Mentre infatti, durante i mesi estivi o anche nel corso di quelli autunnali, come del resto qui appurato, è innegabile un abbassamento del livello dell'acquifero freatico, in concomitanza di prolungati periodi piogge non è invece da sottovalutare, ne sono testimonianza la carta idrogeologica e le indagini effettuate in terreni limitrofi in occasione di precedenti studi, un suo innalzamento a una quota vicina a quella del piano campagna.

CARTA DELLE ISOPIEZE DELLA FALDA FREATICA

Stralcio tratto dalla tav. G3 del P.S.C. del Comune di Correggio

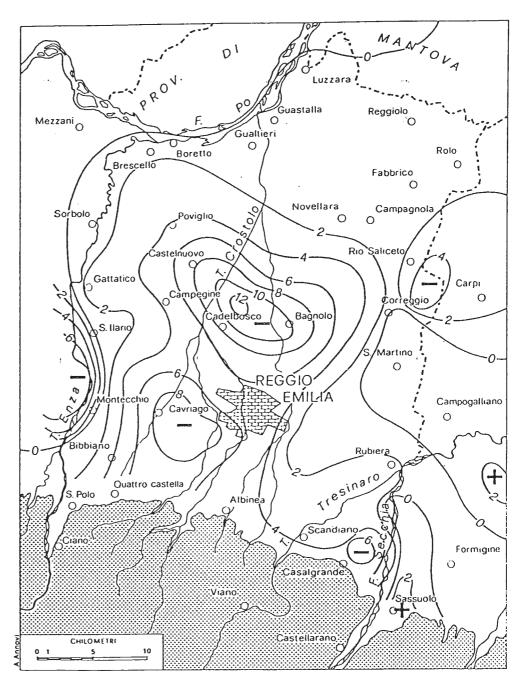
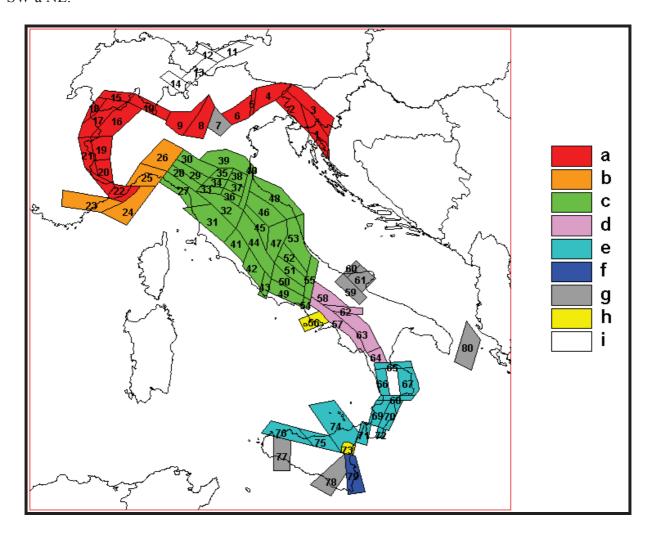


Figura 2) - Curve di uguale variazione del livello statico delle falde sotterranec nel periodo ottobre 1976 - ottobre 1983;

1) Curve di uguale variazione in metri:

²⁾ Terreni impermeabili del margine appenninico che delimitano a sud i bacini idrici sotterranei.



L'elaborato è tratto da "Indagine sullo stato delle acque sotterranee della pianura reggiana"; 1988 - Amministrazio ne Provinciale di Reggio nell'Emilia

SISMICITÀ DELL'AREA

Per caratterizzare la sismicità dell'area si è fatto riferimento, oltre che alla normativa vigente, ai dati disponibili in letteratura ed in particolare ai lavori svolti dal GNDT del CNR (Gruppo Nazionale per la Difesa dai Terremoti).

Si è presa in considerazione la zonazione sismogenetica del territorio italiano ZS4 (progetto di P. Scandone e M. Stucchi – marzo 1999 – cf. tav. seg.) che considera 80 sorgenti omogenee dal punto di vista strutturale e sismogenetico. Secondo questa suddivisione l'area oggetto di studio ricade nell'area 39, appartenente alla fascia padano-adriatica in compressione legata allo sprofondamento passivo della litosfera adriatica sotto il sistema di catena nell'Arco Appenninico Settentrionale secondo cui i meccanismi di rottura attesi sono di tipo thrust e strike-slip con assi di subduzione da SW a NE.

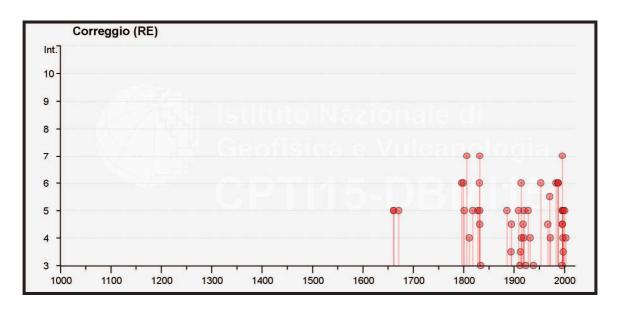
Attraverso elaborazioni probabilistiche il GNDT ha prodotto, per un tempo di ritorno di 475 anni (equivalente alla probabilità di superamento nell'arco temporale di 50 anni – vita media di un edificio), la zonazione del territorio italiano, come riportato in figura. Per la zona le accelerazioni orizzontali di picco attese sono state considerate, in accordo con quanto proposto dal GNDT, pari a PGA = 0.15g (Peak Ground Acceleration).

L'intensità massima risentita nella zona, come risulta dai dati del catalogo del Servizio Sismico Nazionale, non ha superato in epoca storica il valore del VII grado MCS (cf. tabelle qui di seguito allegate).

Storia sismica di Correggio (RE) [44.771, 10.779]

Osservazioni disponibili: 65

Effetti	In occasione del terremoto del	In occasione del terremoto del						
Int.	Anno Me Gi Ho Mi Se	Area epicentrale		Io	Mw			
5	1661 03 21 23	Modenese	6	5-7	4.86			
5	1661 03 22 12 50	Appennino forlivese	9)	6.05			
5	1671 06 20 10	Modenese-Reggiano	7	7	5.27			
6	1796 10 22 04	Emilia orientale	7	7	5.45			
6	1799 02 22 05 45	Correggio	5	5	4.16			
5	1801 10 08 07 52 5	Bolognese	6)	4.90			
F	1802 05 12 09 30	Valle dell'Oglio	8	3	5.60			
7	1806 02 12	Reggiano	7	7	5.21			
4	1811 07 15 22 44	Modenese-Reggiano	6	5-7	5.13			
5	1818 12 09 18 55	Parmense	7	7	5.24			
5	1828 10 09 02 20	Oltrepò Pavese	8	3	5.72			
F	1831 07 14 15 30	Reggiano	5	5-6	4.60			
6	1831 09 11 18 15	Pianura emiliana	7	7-8	5.48			
5	1832 03 11 06 45	Carpi	5	;	4.51			
4-5	1832 03 11 08 45	Parmense						
F	1832 03 12 08 45	Reggiano						
7	1832 03 13 03 30	Reggiano	7	7-8	5.51			
F	1832 03 14 07 41	Reggiano						
F	1832 04 19 14 14	Reggiano						
F	1834 02 14 13 15	Val di Taro-Lunigiana	9)	5.96			
F	1834 07 04 00 45	Val di Taro-Lunigiana	6	5-7	5.08			
3	1834 10 04 19	Bolognese	6)	4.71			
F	1837 04 11 17	Lunigiana	9)	5.94			
5	1886 10 15 02 20	Collecchio	6)	4.70			
F	1887 02 23 05 21 5	Liguria occidentale	9)	6.27			
F	1891 06 07 01 06 1	Valle d'Illasi	8	3-9	5.8			
3-4	1894 11 27 05 07	Bresciano	6	5	4.89			
4-5	1895 05 12 20 29	Reggiano	4	l-5	3.98			
NF	1904 11 17 05 02	Pistoiese	7	,	5.10			

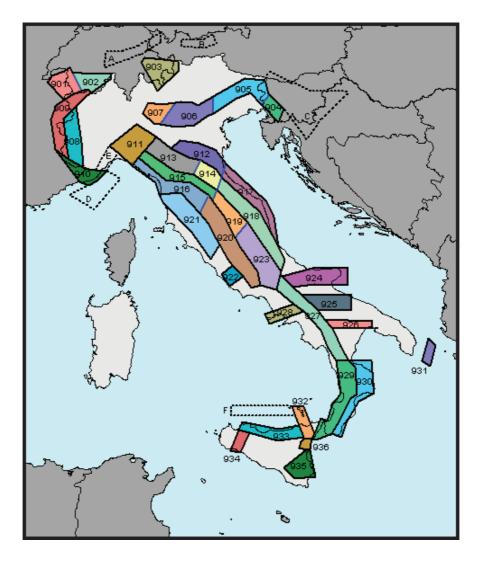

Effetti	In occasione del terremoto del			
Int.	Anno Me Gi Ho Mi Se	Area epicentrale	Io	Mw
5	1909 01 13 00 45	Emilia Romagna orientale	6-7	5.36
3	1912 09 12 21 15	Carpi	4	3.76
3-4	1913 11 25 20 55	Appennino parmense	4-5	4.65
6	1914 10 27 09 22	Lucchesia	7	5.63
4	1915 10 10 23 10	Reggiano	6	4.87
4-5	1918 05 06 08 05	Reggiano	5-6	4.41
4	1919 06 29 15 06 1	Mugello	10	6.38
5	1920 09 07 05 55 4	Garfagnana	10	6.53
3	1923 06 28 15 12	Modenese	6	5.04
5	1928 06 13 08	Carpi	6	4.67
4	1932 07 13 03 42	Reggiano	4-5	3.86
3	1939 10 15 14 05	Garfagnana	6-7	4.96
6	1953 08 22 05 26	Reggiano	6	4.73
NF	1965 11 09 15 35	Appennino reggiano	5	4.17
4-5	1967 04 03 16 36 1	Reggiano	5	4.44
5-6	1971 09 11 23 18 1	Pianura emiliana	5	4.19
4	1972 10 25 21 56 1	Appennino settentrionale	5	4.87
6	1983 11 09 16 29 5	Parmense	6-7	5.04
NF	1984 04 29 05 02 5	Umbria settentrionale	7	5.62
2	1986 12 06 17 07 1	Ferrarese	6	4.43
6	1987 04 24 02 30 2	Reggiano	6	4.64
6	1987 05 02 20 43 5	Reggiano	6	4.71
6	1988 03 15 12 03 1	Reggiano	6	4.57
3	1995 10 10 06 54 2	Lunigiana	7	4.82
7	1996 10 15 09 55 5	Pianura emiliana	7	5.38
5	1996 10 26 04 56 5	Pianura emiliana	5-6	3.94
5	1996 10 26 06 50 2	Pianura emiliana	5-6	3.63
4-5	1996 11 25 19 47 5	Pianura emiliana	5-6	4.29
4-5	1996 12 16 09 09 5	Pianura emiliana	5-6	4.06
4	1997 05 12 22 13 5	Pianura emiliana	4-5	3.68
5	1998 02 21 02 21 1	Pianura emiliana	5	3.93
3-4	1998 03 26 16 26 1	Appennino umbro-marchigiano		5.26
5	2000 06 18 07 42 0	Pianura emiliana	5-6	4.40
NF	2002 06 18 22 23 3	Frignano	4	4.30
4	2003 09 14 21 42 5	Appennino bolognese	6	5.24
F	2008 12 23 15 24 2	Parmense	6-7	5.36

Intendendo:

Int = Intensità al sito (MCS)

Io = Intensità epicentrale (MCS)

Mw = Magnitudo


La sovrastante rappresentazione evidenzia, molto semplicemente, gli eventi della precedente tabella nel rapporto tra anni (in ascisse) ed intensità sismica (in ordinate).

L'Ordinanza P.C.M. n° 3274 del 20 marzo 2003 ha aggiornato la normativa sismica con l'attribuzione, alle diverse località del territorio nazionale, di un valore di scuotimento sismico di riferimento, espresso in termini di incremento di accelerazione al suolo.

Il territorio del comune di Correggio, secondo la nuova zonazione sismogenetica ZS9 (progetto a cura di C. Meletti e G. Valensise del marzo 2004) è incluso nella zona 912, al passaggio, verso sud, con la zona 913 (cf. tavola nella pagina seguente). In base a questa nuova zonazione, il territorio in esame (secondo la precedente classificazione *non classificato*), è stato inserito in zona Z3 a bassa sismicità.

Come espressamente specificato al punto 2.4 della circolare n° 1677/2005 (prot. GEO/05/87449) emanata in data 24710/2005 dalla Giunta della Regione Emilia Romagna, ai fini della determinazione delle azioni sismiche, può essere assegnato, a zone come questa di bassa sismicità, un valore (ag/g), di ancoraggio dello spettro di risposta elastico, pari a 0.15.

Più precisamente, al comune di Correggio, l'allegato 4 dell'Assemblea Legislativa n° 2131 – prot. n° 8511 del 2 maggio 2007, assegna il valore di accelerazione massima orizzontale di picco al suolo, cioè T = 0, espressa in frazione dell'accelerazione di gravità g (a_{refg}), di 0.152.

Zonazione sismogenetica ZS9

Ai fini della definizione dell'azione sismica di progetto, le modifiche ed integrazioni dell'Ordinanza propongono una caratterizzazione geofisica e geotecnica del profilo stratigrafico del suolo. Secondo il D.M. 17/1/2018 "Aggiornamento delle Norme Tecniche delle Costruzioni", in base alle condizioni stratigrafiche ed ai valori delle velocità equivalenti di propagazione delle onde di taglio, mediate sui primi 30 metri di terreno ($V_{\rm S30}$), vengono individuate cinque categorie (A - B - C - D - E).

In ottemperanza con quanto prescritto dalla normativa è stato effettuato un sondaggio sismico passivo HVSR. La prova, nota semplicemente con il nome H/V, fu sperimentata per la prima volta

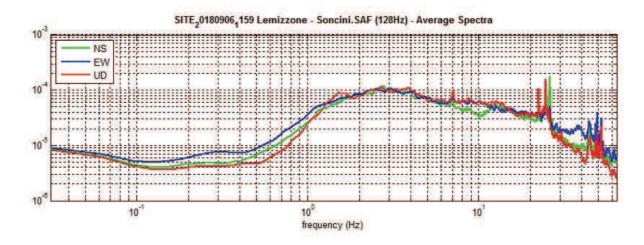
da Nogoshi e Igarashi nel 1970 ma è stata poi diffusa successivamente, nel 1989, da Nakamura (infatti la prova viene anche definita come metodo di Nakamura).

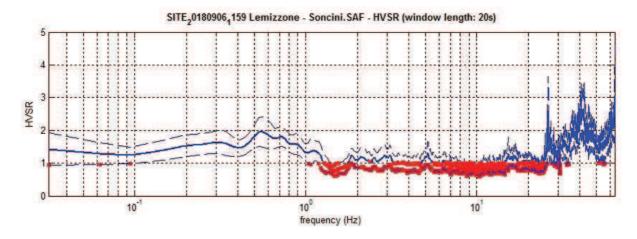
L'indagine consiste in una valutazione sperimentale del rapporto di ampiezza esistente tra la media delle componenti orizzontali e di quella verticale delle vibrazioni ambientali (sismica passiva), misurate in un determinato punto della superficie terrestre tramite un velocimetro triassiale (due orizzontali perpendicolari tra loro ed una verticale).

Quanto detto, giustifica la definizione della metodologia e cioè prova HVSR (Horizontal to Vertical Spectral Ratio) oppure HVSNR (Horizontal to Vertical Spectral Noise Ratio).

Le vibrazioni misurate sono i cosiddetti microtremori e sono l'effetto di una serie di sorgenti le quali sono attive per una molteplicità di frequenze, anche se quelle che interessano a fini ingegneristici sono generalmente quelle comprese nell'intervallo 0,5 – 20 Hz. Le principali sorgenti sono sia di origine antropica (traffico veicolare, attività industriale, rumore urbano in genere) che naturale (onde marine, perturbazioni atmosferiche, cicloni oceanici, tremori vulcanici). Durante l'acquisizione dei dati vanno rispettate una precisa metodologia ed alcune accortezze per fare in modo che il dato sia statisticamente corretto.

Questa metodologia a stazione singola del microtremore sismico consente la misura della frequenza fondamentale di risonanza del sottosuolo e degli edifici, oltre che la stima, in maniera rapida, della stratigrafia superficiale e del Vs30, così come richiesto dalle normative antisismiche vigenti.

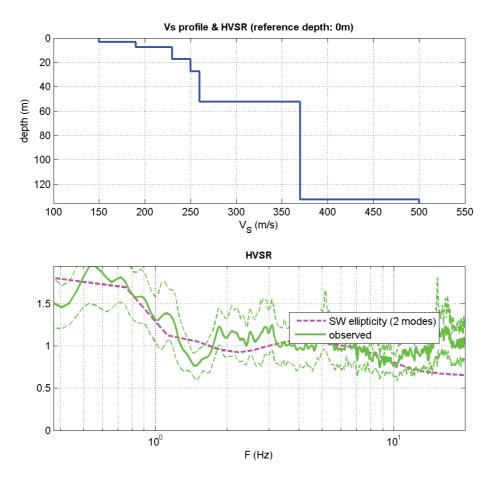

Le misure sono state effettuate con uno strumento denominato Gemini 2 prodotto dalla ditta Pasi di Torino. Il Gemini 2 è un acquisitore dati HVSR costituito da una terna di geofoni con frequenza di risonanza di 2 Hz, accoppiati sia meccanicamente che elettricamente e da un acqui-sitore di dati a 24 bit reali appositamente progettato. Per il suo funzionamento in campagna il Gemini 2 viene collegato ad un computer portatile tramite un'interfaccia USB.


I tre geofoni interni sono orientati secondo una terna di assi cartesiani, assumendo la convenzione descritta nelle linee guida del Progetto S.E.S.AM.E.: l'asse Z corrisponde al geofono

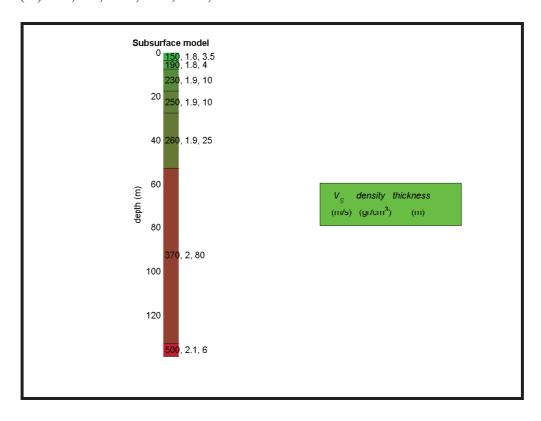
verticale (direzione Up-Down), l'asse X e l'asse Y corrispondono rispettivamente al geofono orizzontale (direzione East-West) e al geofono orizzontale (direzione North-South).

La misurazione, della durata di venti minuti pari a 200 Hz, è stata eseguita utilizzando il software WinHVSR, prodotto dalla ditta Eliosoft.

In base all'elaborazione dei dati di campagna sono stati ottenuti i seguenti risultati:



In the 0.5-20.0Hz frequency range


Peak frequency (Hz): 0.6 (±6.6)

Peak HVSR value: 1.9 (±0.4)

Mean model

Vs (m/s): 150 190 230 250 260 370 500 Thickness (m): 3.5, 4.0, 10.0, 10.0, 25.0, 80.0

Sono stati presi in considerazione cinque strati a cui è stata attribuita la velocità delle onde di taglio S (Vs) ed il rispettivo spessore (d):

1° STRATO	2° STRATO	3° STRATO	4° STRATO	5° STRATO
$V_S = 150 \text{ m/s}$	$V_S = 190 \text{ m/s}$	$V_S = 230 \text{ m/s}$	$V_S = 250 \text{ m/s}$	$V_S = 260 \text{ m/s}$
d = 3.5 m	d = 4.0 m	d = 10.0 m	d = 10.0 m	d = 2.5 m

La valutazione del valore V_{S30} viene ottenuta mediante l'utilizzo della seguente relazione:

$$V_{S30} = \frac{30}{hi}$$

$$\sum_{i=1,n} \frac{}{vi}$$

dove:

hi = spessore dello strato iesimo, m

vi = velocità onde di taglio strato iesimo, m/s

ottenendo:

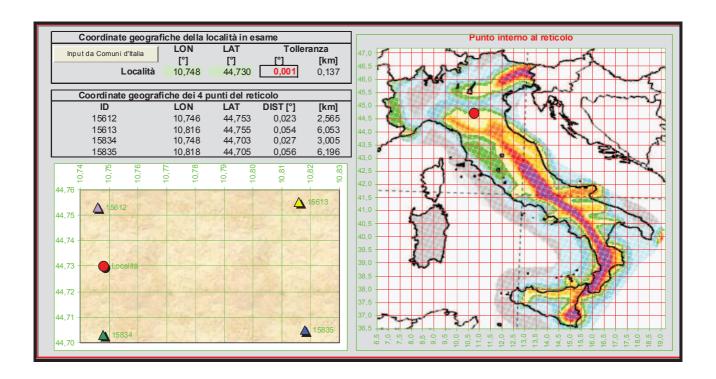
$$V_{\rm S}30 = 218 \text{ m/s}$$

In ottemperanza con quanto prescritto dalla normativa, viste le caratteristiche del primo sottosuolo, il suolo di fondazione può essere pertanto assimilato alla <u>categoria C di azione sismica</u> "Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti" con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.

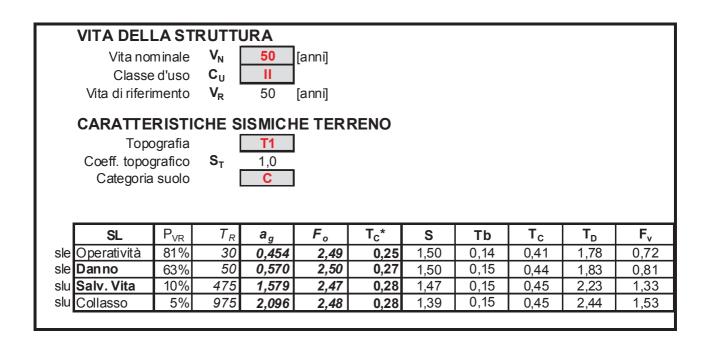
RISPOSTA SISMICA LOCALE

Il Decreto Ministeriale del 14 gennaio 2008 recante le "Nuove Norme Tecniche per le Costruzioni", attualmente aggiornato dal D.M. del 17/1/2018, definisce i criteri antisismici generali, precisando le azioni che devono essere impiegate in fase progettuale per la sicurezza strutturale delle opere.

L'azione sismica sulle costruzioni è valutata partendo da una "pericolosità sismica di base", derivata da studi eseguiti a livello nazionale e definita sulla base di condizioni ideali in superficie di suolo rigido e topografia orizzontale.


Le Azioni di progetto, per un suolo rigido orizzontale, vengono ricavate in funzione di tre parametri:

- ag = accelerazione orizzontale massima
- Fo = fattore di amplificazione massimo dello spettro in accelerazione orizzontale
- Tc* =periodo inizio tratto costante dello spettro in accelerazione orizzontale.

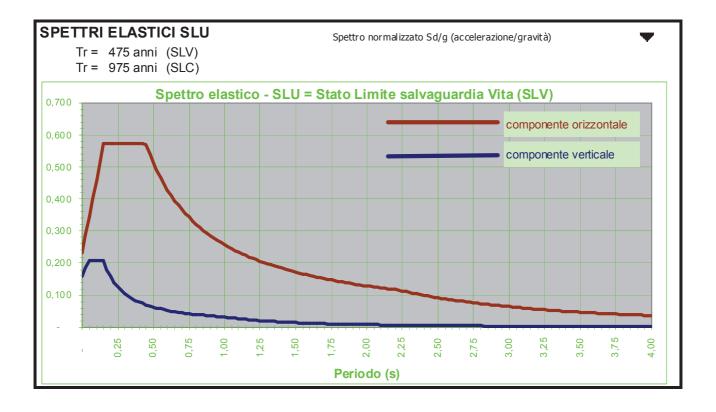

Tali parametri vengono inoltre definiti secondo termini probabilistici differenti, con periodi di ritorno TR di 30, 50, 475, 975 anni; per tale motivo, ai fini progettuali, occorre fissare la vita di riferimento VR della costruzione e la probabilità di superamento associata a ciascuno degli stati limite considerati.

I valori dei parametri ag, Fo e Tc* per la definizione dell'Azione Sismica possono essere calcolati mediante l'utilizzo del programma di calcolo "Calcolo Spettro Sismico", ideato dagli Ingegneri Red Shift & Afazio, in cui vengono generati accelerogrammi correttamente commisurati alla pericolosità sismica del sito.

I primi dati ad essere stati introdotti nel programma sono le coordinate geografiche (latitudine e longitudine) del sito di riferimento (vedi figura in allegato).

Come si può visualizzare nella tabella sottostante, per ottenere gli spettri di risposta sismica locale, sono stati inoltre introdotti i valori della vita della struttura e le caratteristiche sismiche del terreno.

I valori dei principali parametri sismici (ag, Fo, Tc*) riferiti all'area in oggetto al TR = 475 anni dello Stato Limite Ultimo di Salvaguardia della Vita esplicitati sono:


$$ag = ag/g = 1.579 / 9.81 = 0.160$$

$$Fo = 2.47$$

$$Tc* = 0.28$$

Elaborando i dati forniti, il programma di calcolo ha prodotto gli spettri di risposta elastica necessari per definire gli stati limite ultimo.

Nella fattispecie è stato ottenuto il grafico degli spettri elastici SLU:

In assenza di analisi specifiche della risposta sismica locale è possibile valutare l'accelerazione massima attesa al sito mediante la relazione:

$$a_{max} = S_{S} \cdot St \cdot ag$$

in cui:

Ss = coefficiente che tiene conto dell'effetto dell'amplificazione stratigrafica;

St = coefficiente che tiene conto dell'effetto dell'amplificazione topografica;

ag = accelerazione orizzontale massima sul suolo di categoria A.

Tabella 3.2.V - Espressioni di Ss

Categoria sottosuolo	S_S		
A	1,00		
В	$1,00 \le 1,40-0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$		
С	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$		
D	$0,90 \le 2,40-1,50 \cdot F_o \cdot \frac{a_g}{g} \le 1,80 \cdot$		
E	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$		

Nel caso in esame potrà essere assunto:

VN 50 anni - Classe d'Uso II

Stato limite SLV e TR = 475 anni (Paragrafo 7.1 D.M. 14.01.2008):

Ss = 1.47 - Categoria sottosuolo C

St = 1.0 - Categoria topografica T1

 $ag = 0.160 \cdot g$

Sulla base dei dati sopra riportati risulta pertanto che:

$$a_{max} = S_{S} \cdot S_{t} \cdot a_{g} = 1.47 \cdot 1.0 \cdot 0.160 = 0.235 \cdot g.$$

VALUTAZIONE DEL POTENZIALE DI LIQUEFAZIONE

Con il termine di liquefazione si intende generalmente la perdita di resistenza dei terreni saturi, sotto sollecitazioni di taglio cicliche o monotoniche, in conseguenza delle quali il terreno raggiunge una condizione di fluidità pari a quella di un liquido viscoso.

Ciò avviene quando la pressione dell'acqua nei pori aumenta progressivamente fino ad eguagliare la pressione totale di confinamento e quindi allorché gli sforzi efficaci, da cui dipende la resistenza al taglio, si riducono a zero.

Questi fenomeni si verificano soprattutto nelle sabbie fini e nei limi saturi di densità da media a bassa e a granulometria piuttosto uniforme, anche se contenenti una frazione fine limoso-argillosa.

In conformità con quanto richiesto dal Dgr 2193/2015 e dal punto 7.11.3.4.2. delle NTC 2018, per la presenza di Magnitudo superiori a 5, si è quindi proceduto alla verifica della liquefazione del terreno. La verifica è stata effettuata applicando la metodologia di Robertson, che opera appunto utilizzando i risultati delle prove penetrometriche statiche.

Pur avendo le indagini penetrometriche accertato, nei primi metri dal piano campagna, la presenza di livelli di limi sabbiosi e sabbie limose che si alternano alle argille con modeste caratteristiche geomeccaniche, è stato tuttavia appurato, con l'ausilio del programma LIQUITER della Ditta Geostru, che il primo sottosuolo presenta un rischio di liquefazione molto basso.

RIEPILOGO E CONSIDERAZIONI CONCLUSIVE

Le prove penetrometriche statiche, appositamente effettuate per accertare la reale natura del primo sottosuolo, hanno accertato che nei primi metri vi sono in prevalenza argille ad elevata componente organica e torbosa. Da 3.5÷4 m sino a circa 8÷10.5 m, in sintonia con le indicazioni della "Carta della litologia di superficie", il deposito si caratterizza invece per una preponderanza di limi sabbiosi, sabbie limose e sabbie in modesta matrice limo argillosa. Oltre sino alla profondità di 18 m, vi sono nuovamente in prevalenza argille a cui si alternano sottili livelli di limi sabbiosi, sabbie limose e sabbie.

In base alle risultanze di un'apposita indagine geofisica passiva HVSR, per il terreno sono stati ottenuti valori di picco della frequenza di risonanza (Peak frequency - Hz) di 0.6 e del rapporto spettrale tra le componenti del moto orizzontale e verticale (Peak HVSR value) di 1.9.

La velocità di propagazione delle onde sismiche, nei primi trenta metri (Vs30), è stata quantificata in 218 m/sec; in ottemperanza con quanto prescritto dalla normativa, viste le caratteristiche del primo sottosuolo, il suolo di fondazione può essere pertanto assimilato alla categoria C di azione sismica "Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti" con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.

Mediante l'utilizzo di un apposito programma per il "Calcolo dello Spettro Sismico", ideato dagli Ingegneri Red Shift & Afazio, in cui vengono generati accelerogrammi correttamente commisurati alla pericolosità sismica del sito, si è proceduto poi al calcolo del valore dei parametri ag, Fo e Tc* per la definizione dell'Azione Sismica locale. Riferiti all'area in oggetto, al TR = 475 anni dello Stato Limite Ultimo di Salvaguardia della Vita, sono stati ottenuti i seguenti valori: ag = ag/g = 1.579 / 9.81 = 0.160; Fo = 2.47; Tc* = 0.28.

Elaborando i dati, il programma ha prodotto gli spettri elastici SLU; è stata inoltre calcolata l'accelerazione massima attesa al sito di $a_{max} = Ss \cdot St \cdot ag = 1.47 \cdot 1.0 \cdot 0.160 = 0.235 \cdot g$.

In conformità con quanto richiesto dal Dgr 2193/2015 e dal punto 7.11.3.4.2. delle NTC 2018, per la presenza di Magnitudo superiori a 5, si è quindi proceduto alla verifica della liquefazione del terreno. La verifica è stata effettuata applicando la metodologia di Robertson, che opera appunto utilizzando i risultati delle prove penetrometriche statiche.

Pur avendo le indagini penetrometriche accertato, nei primi metri dal piano campagna, la presenza di livelli di limi sabbiosi e sabbie limose che si alternano alle argille con modeste caratteristiche geomeccaniche, è stato tuttavia appurato, con l'ausilio del programma LIQUITER della Ditta Geostru, che il primo sottosuolo presenta un rischio di liquefazione molto basso.

Sulla base dei parametri geomeccanici del terreno acquisiti con le indagini si è infine proceduto alla valutazione del peso di volume (γ), dell'angolo di attrito interno (ϕ), della coesione non drenata (Cu), della coesione efficace (c'), del modulo edometrico (Mo) e del modulo elastico (E) per gli strati che caratterizzano il primo sottosuolo. In conformità con quanto prescritto dal D.M. 17/01/2018, suddetti valori potranno poi essere utilizzati per il dimensionamento strutturale; tenendo conto che sul sedime del futuro edificio è attualmente presente un fabbricato, di cui non si conoscono le effettive caratteristiche delle attuali fondazioni, si può ipotizzare, per una fondazione su trave, una profondità minima di 1-1.2 m dal piano cortilivo attuale. Solamente in fase esecutiva si potrà quindi definire con precisione la reale quota di imposta, con la possibilità quindi di livellare il cassero con una coltre di spessore variabile di magrone.

Misure effettuate al termine dei sondaggi, utilizzando un freatimetro a restituzione sonora, hanno accertato che il livello statico della falda si è in breve tempo posizionato a 2.7 m dalla quota attuale del terreno. Come sottolineato in perizia, è giustificata una variabilità stagionale che comporti, nelle stagioni piovose, una risalita ad una quota più vicina al piano campagna; nel contempo, nei periodi secchi, con un livello dell'acquifero similare a quello riscontrato nel corso delle indagini, vi è

invece da temere l'insorgere di fenomeni di consolidazione della frazione coesiva alla base delle fondazioni. Queste situazioni possono risultare ancor più pericolose in presenza di un prolungato ristagno dell'acqua alla base delle stesse; si dovrà perciò avere l'accortezza di raccogliere ed allontanare, utilizzando tubazioni e raccordi a perfetta tenuta, tutte le acque meteoriche e di scarico in direzione della rete drenante principale.

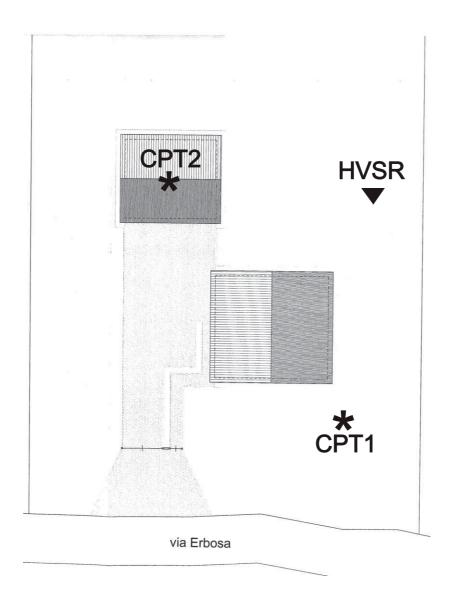
Si consiglia inoltre di non mettere a dimora, nelle immediate vicinanza del fabbricato, piante a radice profonda idroesigenti, quali ad esempio aceri e betulle che, nel tempo, possono essere causa non secondaria nell'insorgere, in concomitanza di stagioni particolarmente secche, di pericolosi fenomeni di consolidazione tipici di terreni, come quello qui accertato nei primi metri, in cui è preponderante la natura coesiva.

Nel rispetto di quanto in precedenza esposto e delle disposizioni delle leggi vigenti, siano esse nazionali che regionali (D.M. 17/01/2018 "Aggiornamento delle norme tecniche per le costruzioni") che prescrivono un'attenta verifica dell'idoneità delle strutture in funzione delle caratteristiche del primo sottosuolo, si attesta l'idoneità del terreno all'attuazione dell'intervento edilizio in progetto e si concede quindi parere geologico favorevole.

Scandiano, ottobre 2018

ALLEGATI

- A) UBICAZIONE INDAGINI
- B) PROVE PENETROMETRICHE STATICHE (effettuate con penetrometro statico tipo GOUDA da 10 t)
- C) SISMICA A RIFRAZIONE PER
 LA DETERMINAZIONE DEL Vs30
 (realizzata applicando il metodo MASW con sismografo
 PASI 16SG24)
- D) VERIFICA A LIQUEFAZIONE (eseguita con il programma Liquiter della Ditta Geostru)


UBICAZIONE INDAGINI

SCALA 1:400

*Penetrometrie statiche

SCALA 1:400

▼ Sismica passiva HVSR

- PROVE PENETROMETRICHE STATICHE -

70001

DIAGRAMMI DI RESISTENZA

TABELLE E VALORI DI RESISTENZA

VALUTAZIONI LITOLOGICHE

PARAMETRI GEOTECNICI

LEGENDA VALORI DI RESISTENZA

Strumento utilizzato:

PENETROMETRO STATICO tipo:

Caratteristiche:

- punta conica meccanica Ø 35.7 mm, angolo di apertura α = 60 $^{\circ}$ -(area punta Ap = 10 cm²)
- manicotto laterale di attrito tipo 'Begemann' (Ø 35.7 mm h 133 mm sup. lat. Am. = 150 cm²)
- velocità di avanzamento costante

$$V = 2 \text{ cm/sec} (\pm 0.5 \text{ cm/sec})$$

- spinta max nominale dello strumento

Smax variabile a seconda del tipo

- costante di trasformazione (lett.⇒ Spinta)

Ct = SPINTA (Kg) / LETTURA DI CAMPAGNA

fase 1 - resistenza alla punta

$$Rp(Kg/cm^2) = (L, punta) Ct/10$$

fase 2 - resistenza laterale locale RL (Kg / cm²)

= [(L. laterale) - (L. punta)] Ct / 150

fase 3 - resistenza totale

Rp / RL = 'rapporto Begemann'

- L. punta = lettura di campagna durante l' infissione della sola punta

(fase 1)

- L. laterale = lettura di campagna relativa all'infissione di punta e manicotto

(fase 2)

- L. totale = lettura di campagna relativa all'infissione delle aste esterne

(fase 3)

N.B.: la spinta S (Kg), corrispondente a ciascuna fase, si ottiene moltiplicando la corrispondente lettura di campagna L. per la costante di trasformazione Ct.

N.B. : causa la distanza intercorrente (20 cm circa) fra il manicotto laterale e la punta conica del penetrometro , la resistenza laterale locale RL viene computata 20 cm sopra la punta .

CONVERSIONI

```
1 kN ( kiloNewton ) = 1000 N \approx 100 kg = 0.1 t - 1MN (megaNewton ) = 1000 kN = 1000000 N \approx 100 t
```

1 kPa (kiloPascal) = 1 kN/m² = 0,001 MN/m² = 0,001 MPa
$$\approx$$
 0,1 t/m² = 0,01 kg/cm²

1 MPa (MegaPascal) = 1 MN/m² = 1000 kN/m² = 1000 kPa
$$\approx$$
 100 t / m2 = 10 kg/cm²

$$kg/cm^2 = 10 t/m^2 \approx 100 kN/m^2 = 100 kPa = 0.1 MN/m^2 = 0.1 Mpa$$

 $1 t = 1000 kg \approx 10 kN$

LEGENDA VALUTAZIONI LITOLOGICHE

Valutazioni in base al rapporto: F = (Rp / RL)

(Begemann 1965 - Raccomandazioni A.G.I. 1977)

valide in via approssimata per terreni immersi in falda:

F = Rp / RL	NATURA LITOLOGICA	PROPRIETA'
F < 15	TORBE ED ARGILLE ORGANICHE	COESIVE
15 < F ≤ 30	LIMI ED ARGILLE	COESIVE
30 < F ≤ 60	LIMI SABBIOSI E SABBIE LIMOSE	GRANULARI
F > 60	SABBIE E SABBIE CON GHIAIA	GRANULARI

Vengono inoltre riportate le valutazioni stratigrafiche fornite da Schmertmann (1978), ricavabili in base ai valori di Rp e di FR = (RL / Rp) %:

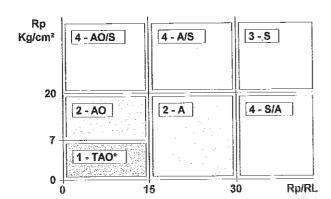
- AO = argilla organica e terreni misti
- Att = argilla (inorganica) molto tenera
- At = argilla (inorganica) tenera
- Am = argilla (inorganica) di media consistenza
- Ac = argilla (inorganica) consistente
- Acc = argilla (inorganica) molto consistente
- ASL = argilla sabbiosa e limosa
- SAL = sabbia e limo / sabbia e limo argilloso
- Ss = sabbia sciolta
- Sm = sabbia mediamente addensata
- Sd = sabbia densa o cementata
- SC = sabbia con molti fossili, calcareniti

Secondo Schmertmann il valore della resistenza laterale da usarsi, dovrebbe essere pari a:

- 1/3 \pm 1/2 di quello misurato , per depositi sabbiosi
- quello misurato (inalterato), per depositi coesivi.

LEGENDA PARAMETRI GEOTECNICI

SCELTE LITOLOGICHE (validità orientativa)


Le scelte litologiche vengono effettuate in base al rapporto Rp / RL (Begemann 1965 -Raccomandazioni A.G.I. 1977), prevedendo altresì la possibilità di casi dubbi :

Rp ≤ 20 kg/cm² : possibili terreni COESIVI

anche se (Rp/RL) > 30

Rp ≥ 20 kg/cm² : possibili terreni GRANULARI

anche se (Rp/RL) < 30

NATURA LITOLOGICA

1 - COESIVA (TORBOSA) ALTA COMPRIMIBILITA'

2 - COESIVA IN GENERÉ

3 - GRANULARE

4 - COESIVA / GRANULARE

PARAMETRI GEOTECNICI (validità orientativa) - simboli - correlazioni - bibliografia

 γ' = peso dell' unità di volume (efficace) del terreno [correlazioni : γ' - Rp - natura]

(Terzaghi & Peck 1967 -Bowles 1982)

 $\sigma'vo$ = tensione verticale geostatica (efficace) del terreno (valutata in base ai valori di γ')

Cu = coesione non drenata (terreni coesivi) [correlazioni : Cu - Rp]

OCR = grado di sovra consolidazione (terreni coesivi) [correlazioni : OCR - Cu - σ'vo]

(Ladd et al. 1972 / 1974 / 1977 - Lancellotta 1983)

Eu = modulo di deformazione non drenato (terr.coes.) [correl. : Eu - Cu - OCR - Ip | Ip= ind.plast.] Eu50 - Eu25 corrispondono rispettivamente ad un grado di mobilitazione dello sforzo deviatorico

pari al 50-25% (Duncan & Buchigani 1976)

E' = modulo di deformazione drenato (terreni granulari) [correlazioni : E' - Rp]
E'50 - E'25 corrispondono rispettivamente ad un grado di mobilitazione dello sforzo deviatorico
pari al 50-25% (coeff. di sicurezza F = 2 - 4 rispettivamente)
(Schmertmann 1970 / 1978 - Jamiolkowski et al. 1983)

Mo = modulo di deformazione edometrico (terreni coesivi e granulari) [correl.: Mo - Rp - natura] (Sanglerat 1972 - Mitchell & Gardner 1975 - Ricceri et al. 1974 - Holden 1973)

Dr = densità relativa (terreni gran. N. C. - normalmente consolidati)

[correlazioni : Dr - Rp - o'vo] (Schmertmann 1976)

Ø' = angolo di attrito interno efficace (terreni granulari N.C.) [correl. : Ø' - Dr - Rp - O'vo]

(Schmertmann 1978 - Durgunoglu & Mitchell 1975 - Meyerhof 1956 / 1976) Ø1s - (Schmertmann) sabbla fine uniforme Ø2s - sabbla media unif./ fine ben gradata

Ø3s - sabbia grossa unif./ media ben gradata Ø4s - sabbia-ghiaia poco lim./ ghiaietto unif.

Ødm - (Durgunoglu & Mitchell) sabbie N.C. Ømy - (Meyerhof) sabbie Ilmose

Amax = accelerazione al suolo che può causare liquefazione (terreni granulari)

(g = acc.gravità)(Seed & Idriss 1971 - Sirio 1976) [correlazioni: (Amax/g) - Dr]

E. (0522) 984819

CPT 1

2.010496-059

PROVA PENETROMETRICA STATICA LETTURE DI CAMPAGNA / VALORI DI RESISTENZA

committente : Soncini Mauro - Berselli Graziella
 lavoro : Ristrutturazione con demolizione e ricostruzione
 località : Via Erbosa, 2 - Lemizzone di Correggio (RE)
 note : - pagina : 1
 O6/09/2018
 quota inizio : Piano Campagna
 prof. falda : 2,70 m da quota inizio
 pagina : 1

								pagina		•	
prf	LP	LL	Rp	RL	Rp/RI	prf	LP	LL	Rp	RL	Rp/RI
m	Kg/cm ²	Kg/cm ²	Kg/cm ²	Kg/cm ²	-	m	Kg/cm ²	Kg/cm ²	Kg/cm ²	Kg/cm ²	-
						1					
0,20	20,0		40,0	1,20	33,0	9,20	12,0	18,5	24,0	1,27	19,0
0,40	23,0	32,0	46,0	0,53	86,0	9,40	11,5	21,0	23,0	0,40	57,0
0,60	22,0	26,0	44,0	1,87	24,0	9,60	16,0	19,0	32,0	0,93	34,0
0,80	15,0	29,0	30,0	1,87	16,0	9,80	6,5	13,5	13,0	1,33	10,0
1,00	19,0	33,0	38,0	1,80	21,0	10,00	60,0	70,0	120,0	4,40	27,0
1,20	21,5	35,0	43,0	2,40	18,0	10,20	17,0	50,0	34,0	2,07	16,0
1,40	14,0	32,0	28,0	2,33	12,0	10,40	17,5	33,0	35,0	1,60	22,0
1,60	11,5	29,0	23,0	1,67	14,0	10,60	15,0	27,0	30,0	1,53	20,0
1,80	10,5	23,0	21,0	1,07	20,0	10,80	11,5	23,0	23,0	1,27	18,0
2,00	11,0	19,0	22,0	1,27	17,0	11,00	10,0	19,5	20,0	1,33	15,0
2,20	10,5	20,0	21,0	1,33	16,0	11,20	16,0	26,0	32,0	1,73	18,0
2,40	10,0	20,0	20,0	1,47	14,0	11,40	17,0	30,0	34,0	1,87	18,0
2,60	10,0	21,0	20,0	1,53	13,0	11,60	16,0	30,0	32,0	1,87	17,0
2,80	11,5	23,0	23,0	1,40	16,0	11,80	17,0	31,0	34,0	1,60	21,0
3,00	9,5	20,0	19,0	1,33	14,0	12,00	16,5	28,5	33,0	1,87	18,0
3,20	9,0	19,0	18,0	1,33	13,0	12,20	17,5	31,5	35,0	1,93	18,0
3,40	7,5	17,5	15,0	1,00	15,0	12,40 12,60	16,5	31,0	33,0	2,07	16,0
3,60	6,0	13,5	12,0	0,67	18,0		16,5	32,0	33,0	2,07	16,0
3,80	7,0	12,0	14,0	0,80	17,0	12,80	19,5	35,0	39,0	1,67	23,0
4,00	7,0	13,0	14,0	0,73	19,0	13,00	13,5	26,0	27,0	1,40	19,0
4,20	8,5	14,0	17,0	1,07 0,73	16,0	13,20 13,40	10,5	21,0	21,0	0,93	22,0
4,40	12,0 12,5	20,0 18,0	24,0 25,0		33,0	13,40	12,0 16,0	19,0	24,0	1,07 1,33	22,0
4,60	12,5			0,67	37,0	13,80		24,0	32,0		24,0
4,80	9,0	17,5	25,0	1,20 0,80	21,0 22,0		17,0 17,0	27,0	34,0	1,73	20,0 25,0
5,00		18,0 27,0	18,0 42,0			14,00 14,20	21,0	30,0	34,0	1,33	20,0
5,20 5,40	21,0 12,0	20,0	42,0 24,0	1,07 0,93	39,0 26,0	14,20	17,5	31,0 33,5	42,0 35,0	2,13 1,53	23,0
5,60	18,0	25,0	36,0	1,00	36,0	14,40	16,5	28,0	33,0	1,67	20,0
5,80	15,5	23,0	31,0	0,73	42,0	14,80	15,5	28,0	31,0	1,67	19,0
6,00	12,5	18,0	25,0	0,73	54,0	15,00	16,0	28,0	32,0	1,80	18,0
6,20	7,5	11,0	15,0	0,47	28,0	15,20	19,0	32,5	38,0	1,67	23,0
6,40	9,0	13,0	18,0	0,33	45,0	15,40	18,5	31,0	37,0	2,00	18,0
6,60	7,5	10,5	15,0	0,40	19,0	15,60	20,0	35,0	40,0	1,73	23,0
6,80	10,5	16,5	21,0	0,47	45,0	15,80	19,5	32,5	39,0	2,27	17,0
7,00	5,0	8,5	10,0	0,53	19,0	16,00	18,0	35,0	36,0	2,13	17,0
7,20	15,0	19,0	30,0	0,60	50,0	16,20	17,0	33,0	34,0	1,80	19,0
7,40	12,5	17,0	25,0	0,47	54,0	16,40	16,5	30,0	33,0	1,87	18,0
7,60	12,0	15,5	24,0	0,60	40,0	16,60	17,0	31,0	34,0	1,60	21,0
7,80	6,5	11,0	13,0	0,53	24,0	16,80	12,0	24,0	24,0	1,13	21,0
8,00	9,0	13,0	18,0	0,80	22,0	17,00	9,5	18,0	19,0	1,07	18,0
8,20	9,0	15,0	18,0	0,73	25,0	17,20	11,5	19,5	23,0	1,07	22,0
8,40	10,5	16,0	21,0	0,47	45,0	17,40	11,5	19,5	23,0	2,00	12,0
8,60	11,5	15,0	23,0	0,47	34,0	17,60	15,0	30,0	30,0	0,40	75,0
8,80	11,0	16,0	22,0	0,73	30,0	17,80	14,0	17,0	28,0	1,53	18,0
9,00	9,5	15,0	19,0	0,87	22,0	18,00	14,5	26,0	29,0		
3,00	0,0	10,0	. 0,0	3,07	,0	. 5,55	. 1,0	_0,0	_0,0		

⁻ PENETROMETRO STATICO tipo GOUDA da 10 t - (con anello allargatore) -

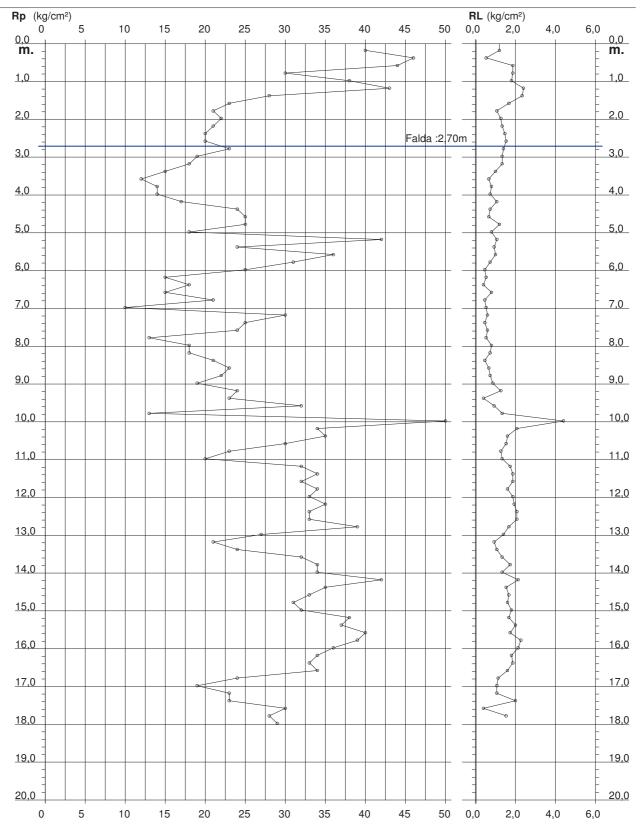
⁻ COSTANTE DI TRASFORMAZIONE Ct = 20 - Velocità Avanzamento punta 2 cm/s

⁻ punta meccanica tipo Begemann ø = 35.7 mm (area punta 10 cm² - apertura 60°)

⁻ manicotto laterale (superficie 150 cm²)

PROVA PENETROMETRICA STATICA DIAGRAMMA DI RESISTENZA

CPT 1

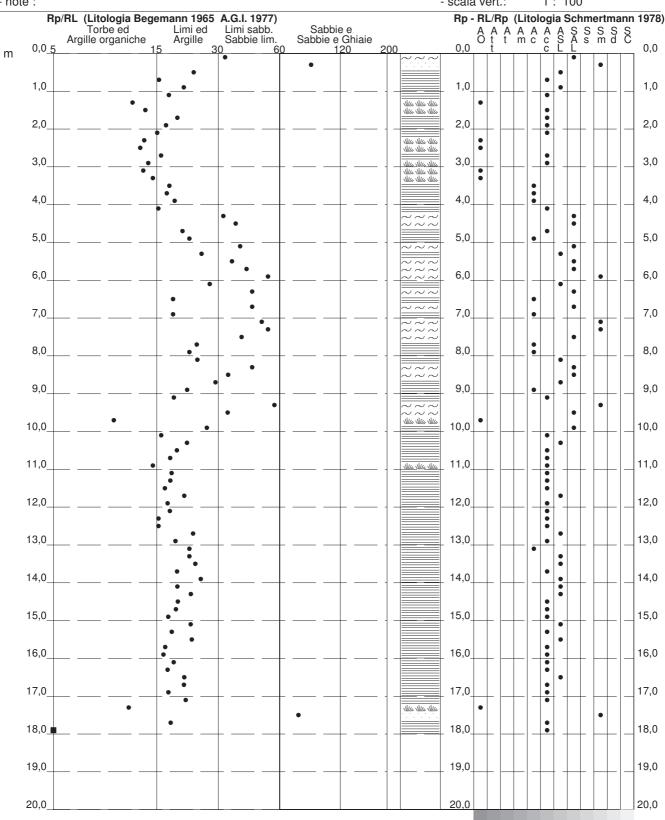

2.010496-059

- committente : Soncini Mauro - Berselli Graziella

lavoro : Ristrutturazione con demolizione e ricostruzione
 località : Via Erbosa, 2 - Lemizzone di Correggio (RE)

- data : 06/09/2018
- quota inizio : Piano Campagna
- prof. falda : 2,70 m da quota inizio

- scala vert.: 1: 100


PROVA PENETROMETRICA STATICA VALUTAZIONI LITOLOGICHE

CPT 1

2.010496-059

Soncini Mauro - Berselli Graziella 06/09/2018 - committente : - data: - lavoro Ristrutturazione con demolizione e ricostruzione - quota inizio: Piano Campagna Via Erbosa, 2 - Lemizzone di Correggio (RE) - prof. falda: 2,70 m da quota inizio - località

- note : - scala vert .: 1:100

PROVA PENETROMETRICA STATICA TABELLA PARAMETRI GEOTECNICI

CPT 1

06/09/2018

2.010496-059

- committente : Soncini Mauro - Berselli Graziella

- lavoro : Ristrutturazione con demolizione e ricostruzione - località : Via Erbosa, 2 - Lemizzone di Correggio (RE)

- note :

- quota inizio : Piano Campagna - prof. falda : 2,70 m da quota inizio

- pagina : 1

- data :

11010	NATURA COESIVA	NATURA GRANULARE
Prof. Rp Rp/Rl Natura Y'	p'vo Cu OCR Eu50 Eu25 Mo	Dr ø1s ø2s ø3s ø4s ødm ømy Amax/g E'50 E'25 Mo
m kg/cm² (-) Litol. t/m³ 0,20 40 33 3:::: 1,85	0,04	% (°) (°) (°) (°) (°) (°) (-) kg/cm² kg/cm² 100 42 43 45 46 45 30 0,258 67 100 120
0,40 46 86 3:::: 1,85 0,60 44 24 4/:/: 1,85	0,11 1,47 99,9 249 374 132	100 42 43 45 46 45 31 0,258 77 115 138 97 42 43 44 46 43 31 0,249 73 110 132
0,80 30 16 4/:/: 1,85 1,00 38 21 4/:/: 1,85 1,20 43 18 4/:/: 1,85	0,19 1,27 69,5 215 323 114	77 39 41 42 44 40 29 0,181 50 75 90 80 39 41 43 44 40 30 0,190 63 95 114 80 39 41 43 44 40 30 0,189 72 108 129
1,40 28 12 4/:/: 1,85 1,60 23 14 4/:/: 1,85	0,26 0,97 32,5 164 246 84	61 37 39 41 43 37 28 0,134 47 70 84 51 35 37 40 42 36 28 0,107 38 58 69
1,80 21 20 4/:/: 1,85 2,00 22 17 4/:/: 1,85	0,33 0,82 19,5 140 210 63 0,37 0,85 17,7 144 216 66	45 34 37 39 42 34 27 0,092 35 53 63 44 34 37 39 42 34 28 0,090 37 55 66
2,20 21 16 4/:/: 1,85 2,40 20 14 4/:/: 1,85	0,44 0,80 13,1 136 204 60	40 34 36 39 41 33 27 0,080 35 53 63 <u> </u>
2,60 20 13 4/:/: 1,85 2,80 23 16 4/:/: 0,94 3,00 19 14 2//// 0,99	0,50 0,87 12,5 148 221 69	35 33 35 38 41 32 27 0,067 33 50 60 38 33 36 38 41 33 28 0,076 38 58 69
3,20 18 13 2/// 0,98 3,40 15 15 2/// 0,95	0,54 0,75 9,5 129 194 56	
3,60 12 18 2/// 0,92 3,80 14 17 2/// 0,94	0,58 0,57 6,2 151 226 45 0,60 0,64 6,8 151 226 48	
4,00 14 19 2/// 0,94 4,20 17 16 2/// 0,97 4,40 24 33 3:::: 0,86	0,63 0,72 7,4 156 234 54	33 33 35 38 41 31 28 0,065 40 60 72
4,60 25 37 3:::: 0,86 4,80 25 21 4/:/: 0,94	0,67	34 33 35 38 41 31 28 0,067 42 63 75 34 33 35 38 41 31 28 0,065 42 63 75
<u>5,00</u> 18 22 2//// 0,98 5,20 42 39 3:::: 0,90	0,71 0,75 6,8 179 269 56 0,72	50 35 37 40 42 34 30 0,104 70 105 126
5,40 24 26 4/:/: 0,94 5,60 36 36 3:::: 0,89 5,80 31 42 3:::: 0,88	0,76	30 32 35 38 40 31 28 0,058 40 60 72 44 34 36 39 41 33 30 0,088 60 90 108 38 33 36 38 41 32 29 0,075 52 78 93
6,00 25 54 3:::: 0,86 6,20 15 28 2//// 0,95	0,80	30 32 35 38 40 31 28 0,058 42 63 75
6,40 18 45 4/:/: 0,91 6,60 15 19 2//// 0,95	0,83 0,75 5,5 226 339 56 0,85 0,67 4,6 237 356 50	18 30 33 36 39 28 27 0,033 30 45 54
6,80 21 45 3:::: 0,85 7,00 10 19 2//// 0,90 7,20 30 50 3:::: 0,88	0,89 0,50 3,1 244 366 40	22 31 34 37 40 29 27 0,041 35 53 63 33 33 35 38 41 31 29 0,064 50 75 90
7,40 25 54 3:::: 0,86 7,60 24 40 3:::: 0,86	0,92 0,94	26 32 34 37 40 30 28 0,050 42 63 75 24 31 34 37 40 29 28 0,047 40 60 72
7,80 13 24 2/// 0,93 8,00 18 22 2/// 0,98	0,98 0,75 4,5 273 409 56	
8,20 18 25 2//// 0,98 8,40 21 45 3:::: 0,85 8,60 23 34 3:::: 0,86	1,01	18 31 33 36 39 28 27 0,034 35 53 63 21 31 34 37 40 29 28 0,039 38 58 69
8,80 22 30 4/:/: 0,93 9,00 19 22 2//// 0,99	1,05 0,85 4,8 291 437 66 1,07 0,78 4,2 299 448 58	19 31 34 36 40 28 28 0,036 37 55 66
9,20 24 19 4/:/: 0,94 9,40 23 57 3:::: 0,86 9,60 32 34 3:::: 0,88	1,11	21 31 34 37 40 29 28 0,040 40 60 72 19 31 34 36 40 28 28 0,036 38 58 69 30 32 35 38 40 30 29 0,058 53 80 96
9,80 13 10 2/// 0,93 10,00 120 27 4/:/: 1,07	1,14 0,60 2,8 306 459 47 1,16 4,00 29,4 680 1020 360	75 38 40 42 44 37 35 0,173 200 300 360
10,20 34 16 4/:/: 0,98 10,40 35 22 4/:/: 0,98	1,18 1,13 6,0 314 471 102 1,20 1,17 6,0 317 476 105	31 32 35 38 40 30 29 0,059 57 85 102 31 32 35 38 41 30 29 0,061 58 88 105
10,60 30 20 4/:/: 0,96 10,80 23 18 4/:/: 0,94 11,00 20 15 4/:/: 0,93	1,24 0,87 4,0 346 519 69	26 32 34 37 40 29 29 0,049 50 75 90 16 30 33 36 39 28 28 0,031 38 58 69 11 30 33 36 39 27 27 0,022 33 50 60
11,20 32 18 4/:/: 0,97 11,40 34 18 4/:/: 0,98	1,28 1,07 5,0 353 529 96	27 32 34 37 40 29 29 0,051 53 80 96 29 32 35 37 40 29 29 0,055 57 85 102
11,60 32 17 4/:/: 0,97 11,80 34 21 4/:/: 0,98	1,32 1,07 4,8 365 548 96 1,34 1,13 5,1 368 551 102	26 32 34 37 40 29 29 0,050 53 80 96 28 32 35 37 40 29 29 0,053 57 85 102
12,00 33 18 4/:/: 0,97 12,20 35 18 4/:/: 0,98 12,40 33 16 4/:/: 0,97	1,38 1,17 5,1 378 568 105	26 32 34 37 40 29 29 0,051 55 83 99 28 32 35 37 40 29 29 0,054 58 88 105 26 32 34 37 40 29 29 0,049 55 83 99
12,60 33 16 4/:/: 0,97 12,80 39 23 4/:/: 1,00	1,41 1,10 4,6 394 591 99	25 32 34 37 40 29 29 0,048 55 83 99 31 32 35 38 40 30 30 0,060 65 98 117
<u>13,00</u> 27 19 4/:/: 0,95 13,20 21 22 4/:/: 0,93	1,45 0,95 3,7 410 615 81 1,47 0,82 3,0 404 606 63	18 31 33 36 39 28 28 0,034 45 68 81 9 29 32 35 39 26 27 0,019 35 53 63
13,40 24 22 4/:/: 0,94 13,60 32 24 4/:/: 0,97 13,80 34 20 4/:/: 0,98	1,51 1,07 4,1 422 632 96	13 30 33 36 39 27 28 0,026 40 60 72 23 31 34 37 40 28 29 0,043 53 80 96 25 31 34 37 40 29 29 0,047 57 85 102
<u>14,00</u> 34 25 4/:/: 0,98 14,20 42 20 4/:/: 1,00	1,55 1,13 4,2 433 649 102 1,57 1,40 5,4 426 640 126	24 31 34 37 40 29 29 0,046 57 85 102 31 32 35 38 40 30 30 0,060 70 105 126
14,40 35 23 4/:/: 0,98 14,60 33 20 4/:/: 0,97	1,59 1,17 4,3 444 666 105 1,61 1,10 3,9 451 677 99	25 31 34 37 40 29 29 0,047 58 88 105 22 31 34 37 40 28 29 0,042 55 83 99
14,80 31 19 4/:/: 0,97 15,00 32 18 4/:/: 0,97 15,20 38 23 4/:/: 0,99	1,65 1,07 3,6 465 698 96	20 31 34 37 40 28 29 0,038 52 78 93 21 31 34 37 40 28 29 0,039 53 80 96 26 32 34 37 40 29 30 0,050 63 95 114
15,40 37 18 4/:/: 0,99 15,60 40 23 4/:/: 1,00	1,69 1,23 4,2 471 707 111 1,71 1,33 4,6 475 713 120	25 32 34 37 40 29 30 0,048 62 93 111 27 32 35 37 40 29 30 0,053 67 100 120
15,80 39 17 4/:/: 1,00 16,00 36 17 4/:/: 0,99 16,20 34 19 4/:/: 0,98	1,75 1,20 3,9 489 734 108	26 32 34 37 40 29 30 0,050 65 98 117 23 31 34 37 40 28 30 0,044 60 90 108 31 34 37 40 28 30 0,044 60 90 108
16,20 34 19 4/:/: 0,98 16,40 33 18 4/:/: 0,97 16,60 34 21 4/:/: 0,98	1,79 1,10 3,4 502 754 99	21 31 34 37 40 28 29 0,040 57 85 102 20 31 34 36 40 28 29 0,038 55 83 99 21 31 34 37 40 28 29 0,039 57 85 102
16,80 24 21 4/:/: 0,94 17,00 19 18 2//// 0,99	1,82 0,89 2,6 468 702 72 1,84 0,78 2,1 429 643 58	8 29 32 35 39 26 28 0,018 40 60 72
17,20 23 22 4/:/: 0,94 17,40 23 12 4/:/: 0,94 17,60 30 75 3:::: 0,88	1,88 0,87 2,4 466 700 69	6 29 32 35 39 25 28 0,015 38 58 69 6 29 32 35 38 25 28 0,014 38 58 69 15 30 33 36 39 27 29 0,029 50 75 90
17,80 28 18 4/:/: 0,96 18,00 29 4/:/: 0,96	1,92 0,97 2,7 501 751 84	12 30 33 36 39 26 28 0,024 47 70 84 13 30 33 36 39 26 29 0,026 48 73 87

L. (0522) 984819 Rifer. 57-2018

PROVA PENETROMETRICA STATICA LETTURE DI CAMPAGNA / VALORI DI RESISTENZA

CPT 2 2.010496-059

- committente : Soncini Mauro - Berselli Graziella - data : 06/09/2018
- lavoro : Ristrutturazione con demolizione e ricostruzione
- località : Via Erbosa, 2 - Lemizzone di Correggio (RE) - prof. falda : 2,70 m da quota inizio
- note : - pagina : 1

								pagina			
prf	LP	LL	Rp	RL	Rp/RI	prf	LP	LL	Rp	RL	Rp/RI
m	Kg/cm ²	Kg/cm ²	Kg/cm ²	Kg/cm ²	-	m	Kg/cm ²	Kg/cm ²	Kg/cm ²	Kg/cm ²	-
						1					
0,20						9,20	17,0	29,0	34,0	1,73	20,0
0,40	20,0		40,0	1,40	29,0	9,40	15,0	28,0	30,0	1,80	17,0
0,60	14,5	25,0	29,0	1,40	21,0	9,60	14,0	27,5	28,0	1,93	14,0
0,80	14,5	25,0	29,0	2,27	13,0	9,80	15,0	29,5	30,0	1,87	16,0
1,00	23,0	40,0	46,0	2,93	16,0	10,00	16,0	30,0	32,0	1,87	17,0
1,20	28,0	50,0	56,0	4,07	14,0	10,20	16,0	30,0	32,0	2,00	16,0
1,40	19,5	50,0	39,0	2,47	16,0	10,40	17,0	32,0	34,0	1,93	18,0
1,60	13,5	32,0	27,0	2,07	13,0	10,60	16,5	31,0	33,0	2,00	16,0
1,80	9,5	25,0	19,0	1,13	17,0	10,80	12,5	27,5	25,0	1,53	16,0
2,00	9,5	18,0	19,0	0,73	26,0	11,00	11,5	23,0	23,0	1,60	14,0
2,20	11,5	17,0	23,0	1,00	23,0	11,20	12,0	24,0	24,0	1,33	18,0
2,40	9,0	16,5	18,0	1,13	16,0	11,40	17,5	27,5	35,0	1,93	18,0
2,60	8,5	17,0	17,0	1,20	14,0	11,60	18,0	32,5	36,0	2,20	16,0
2,80	10,0	19,0	20,0	1,33	15,0	11,80	19,5	36,0	39,0	2,33	17,0
3,00	11,0 10,0	21,0 20,0	22,0	1,33	16,0 17,0	12,00 12,20	16,5 21,0	34,0 45,0	33,0	3,20	10,0
3,20 3,40	7,5	20,0 16,5	20,0 15,0	1,20 1,07	17,0	12,20	21,0 16,0	45,0 32,0	42,0 32,0	2,13 2,00	20,0 16,0
3,40	7,5 5,0	13,0	10,0	0,67	15,0	12,40	16,5	32,0 31,5	33,0	2,00	14,0
3,80	8,0	13,0	16,0	0,07	22,0	12,80	16,5	34,0	33,0	2,33	15,0
4, 00	5,5	11,0	11,0	0,73	21,0	13,00	19,0	36,0	38,0	2,20	17,0
4,20	5,5	9,5	11,0	0,53	21,0	13,20	15,5	32,0	31,0	2,13	15,0
4,40	4,5	8,5	9,0	0,53	17,0	13,40	13,0	29,0	26,0	1,27	21,0
4,60	4,5	8,5	9,0	0,47	19,0	13,60	11,5	21,0	23,0	1,60	14,0
4,80	4,5	8,0	9,0	0,53	17,0	13,80	15,0	27,0	30,0	1,47	20,0
5,00	6,0	10,0	12,0	0,60	20,0	14,00	20,0	31,0	40,0	2,27	18,0
5,20	6,5	11,0	13,0	0,33	39,0	14,20	17,0	34,0	34,0	1,93	18,0
5,40	4,0	6,5	8,0	0,27	30,0	14,40	20,5	35,0	41,0	2,00	20,0
5,60	4,0	6,0	8,0	0,27	30,0	14,60	16,0	31,0	32,0	2,00	16,0
5,80	4,0	6,0	8,0	0,80	10,0	14,80	17,0	32,0	34,0	1,87	18,0
6,00	8,0	14,0	16,0	0,93	17,0	15,00	14,0	28,0	28,0	2,00	14,0
6,20	13,0	20,0	26,0	0,40	65,0	15,20	19,0	34,0	38,0	1,80	21,0
6,40	20,0	23,0	40,0	0,93	43,0	15,40	18,5	32,0	37,0	2,13	17,0
6,60	7,0	14,0	14,0	1,00	14,0	15,60	19,0	35,0	38,0	2,13	18,0
6,80	10,5	18,0	21,0	0,53	39,0	15,80	18,0	34,0	36,0	2,20	16,0
7,00	17,0	21,0	34,0	0,40	85,0	16,00	18,5	35,0	37,0	2,47	15,0
7,20	17,0	20,0	34,0	0,33	102,0	16,20	19,5	38,0	39,0	1,93	20,0
7,40	11,5	14,0	23,0	0,47	49,0	16,40	18,5	33,0	37,0	2,27	16,0
7,60	11,5	15,0	23,0	1,13	20,0	16,60	17,0	34,0	34,0	2,00	17,0
7,80	8,0	16,5	16,0	0,80	20,0	16,80	15,0	30,0	30,0	1,73	17,0
8,00	6,0	12,0	12,0	0,87	14,0	17,00	11,0	24,0	22,0	1,20	18,0
8,20	6,5	13,0	13,0	0,67	19,0	17,20	11,0	20,0	22,0	1,13	19,0
8,40	8,0	13,0	16,0	0,80	20,0	17,40	11,5	20,0	23,0	1,87	12,0
8,60	11,0	17,0	22,0	1,33	16,0	17,60	14,0	28,0	28,0	0,40	70,0
8,80	13,0	23,0	26,0	1,67	16,0	17,80	15,0	18,0	30,0	1,53	20,0
9,00	14,0	26,5	28,0	1,60	17,0	18,00	14,0	25,5	28,0		

⁻ PENETROMETRO STATICO tipo GOUDA da 10 t - (con anello allargatore) -

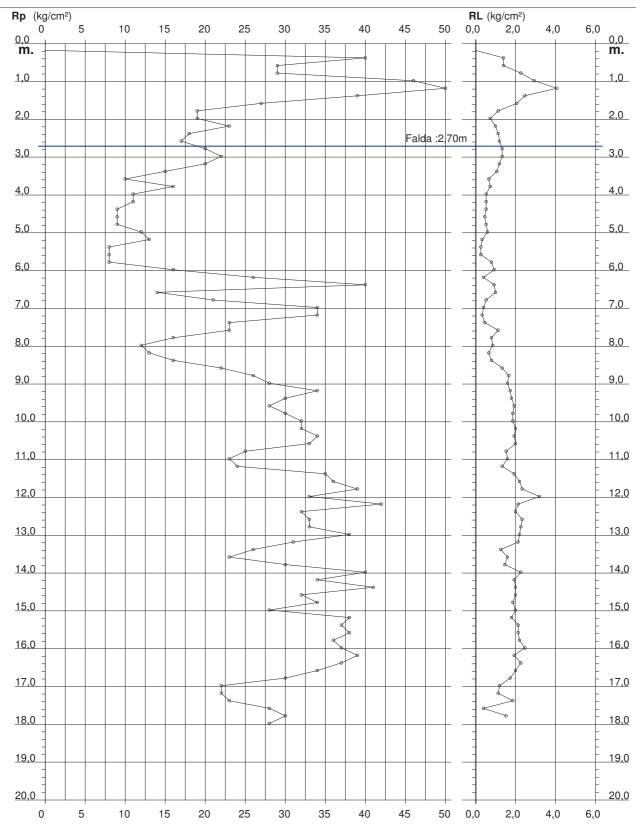
⁻ COSTANTE DI TRASFORMAZIONE Ct = 20 - Velocità Avanzamento punta 2 cm/s

⁻ punta meccanica tipo Begemann ø = 35.7 mm (area punta 10 cm² - apertura 60°)

⁻ manicotto laterale (superficie 150 cm²)

PROVA PENETROMETRICA STATICA DIAGRAMMA DI RESISTENZA

CPT 2

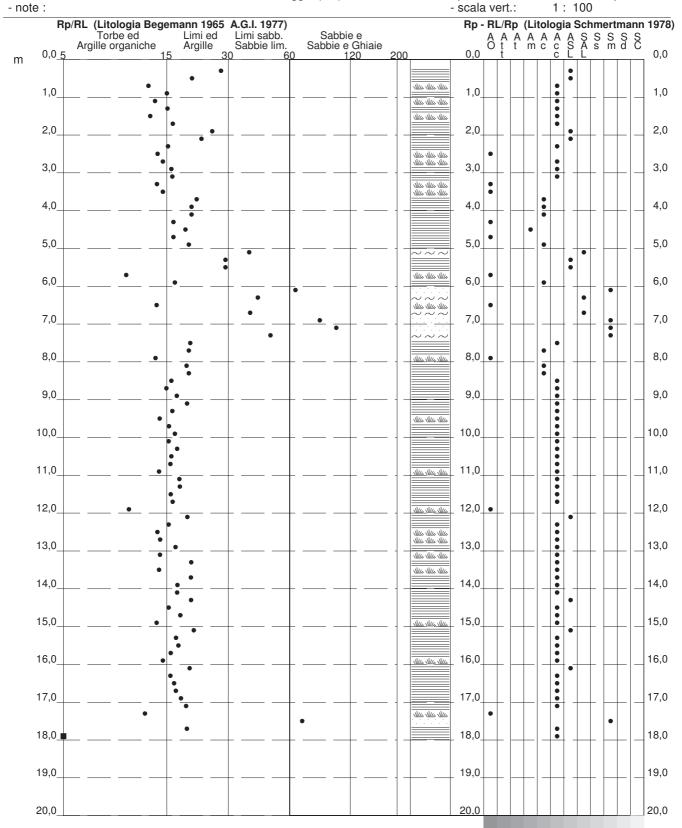

2.010496-059

- committente : Soncini Mauro - Berselli Graziella

lavoro : Ristrutturazione con demolizione e ricostruzione
 località : Via Erbosa, 2 - Lemizzone di Correggio (RE)

- data : 06/09/2018
- quota inizio : Piano Campagna
- prof. falda : 2,70 m da quota inizio

- scala vert.: 1: 100



PROVA PENETROMETRICA STATICA VALUTAZIONI LITOLOGICHE

CPT 2

2.010496-059

committente : Soncini Mauro - Berselli Graziella
 lavoro : Ristrutturazione con demolizione e ricostruzione
 località : Via Erbosa, 2 - Lemizzone di Correggio (RE)
 data : 06/09/2018
 quota inizio : Piano Campagna
 prof. falda : 2,70 m da quota inizio

PROVA PENETROMETRICA STATICA TABELLA PARAMETRI GEOTECNICI

CPT 2

2.010496-059

Soncini Mauro - Berselli Graziella - committente :

- lavoro : Ristrutturazione con demolizione e ricostruzione - località : Via Erbosa, 2 - Lemizzone di Correggio (RE)

- note :

- data :

- quota inizio: Piano Campagna - prof. falda : 2,70 m da quota inizio

06/09/2018

- pagina :

NATURA COESIVA	NATURA GRANULARE
Prof. Rp Rp/Rl Natura Y' p'vo Cu OCR Eu50 Eu25 Mo Dr ø1s	ø2s ø3s ø4s ødm ømy Amax/g E'50 E'25 Mo

INDAGINE HVSR

70000

STRUMENTO: PASI GEMINI 2

winMASW - Surface Waves & Beyond

Horizontal-to-Vertical Spectral Ratio

www.winmasw.com

Date: 19 9 2018

Time: 18 17

Dataset: SITE_20180906_1159 Lemizzone - Soncini.SAF

Sampling frequency (Hz): 128

Window length (sec): 20

Length of analysed temporal sequence (min): 20.0

Tapering (%): 10

In the following the results considering the data in the 0.5-20.0Hz frequency range

Peak frequency (Hz): 0.6 (±6.6)

Peak HVSR value: 1.9 (±0.4)

=== Criteria for a reliable H/V curve ======

#1. [f0 > 10/Lw]: 0.6 > 0.5 (OK)

#2. [nc > 200]: 1402 > 200 (OK)

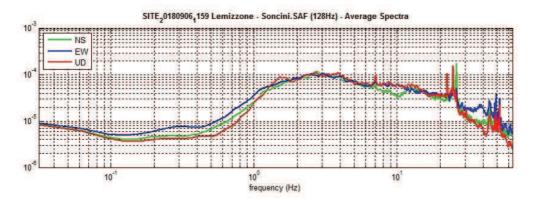
#3. [f0>0.5Hz; sigmaA(f) \leq 2 for 0.5f0 \leq f \leq 2f0] (OK)

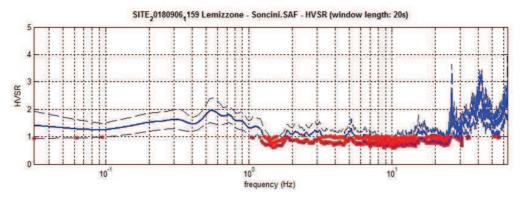
=== Criteria for a clear H/V peak (at least 5 should be fullfilled) ======

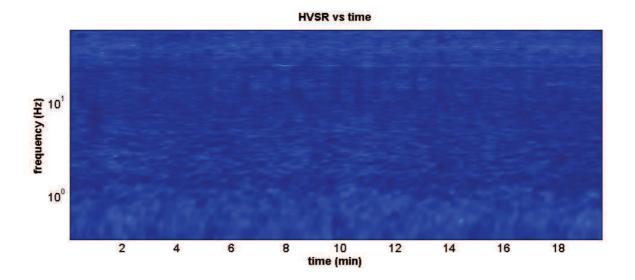
#1. [exists f- in the range [f0/4, f0] | AH/V(f-) < A0/2]: (NO)

#2. [exists f+ in the range [f0, 4f0] | AH/V(f+) < A0/2]: yes, at frequency 1.3Hz (OK)

#3. [A0 > 2]: 1.9 < 2 (NO)


#4. [fpeak[Ah/v(f) \pm sigmaA(f)] = f0 \pm 5%]: (NO)


#5. [sigmaf < epsilon(f0)]: 6.571 > 0.089 (NO)

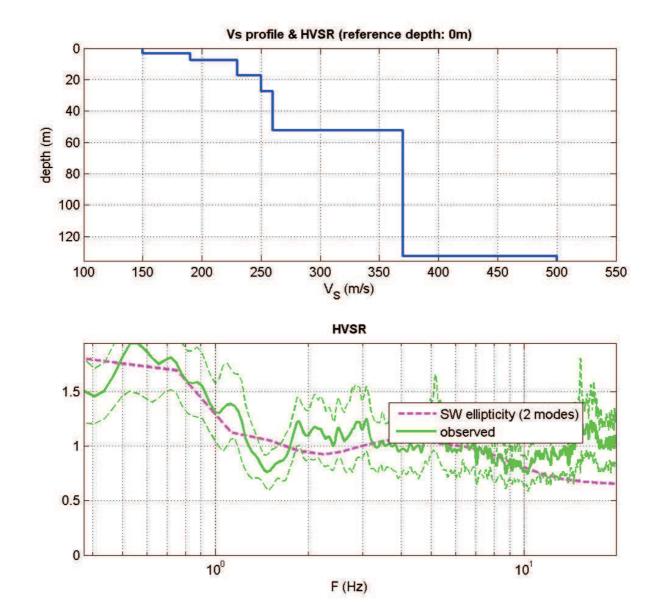

#6. [sigmaA(f0) < theta(f0)]: 0.462 < 2 (OK)

Please, be aware of possible industrial/man-induced peaks or spurious peaks due to meaningless numerical instabilities.

Remember that SESAME criteria should be considered in a flexible perspective and that if you modify the processing parameters they can change.

winMASW

Surface Waves & Beyond www.winmasw.com


winMASW - Inversion of Surface-Wave Dispersion Curves

Main results

www.winmasw.com

Date: 19 9 2018 Time: 18 21

Dataset:

Mean model

Vs (m/s): 150 190 230 250 260 370 500

Thickness (m): 3.5, 4.0, 10.0, 10.0, 25.0, 80.0

Density (gr/cm3) (approximate values): 1.77 1.83 1.88 1.90 1.91 1.99 2.06

Shear modulus (MPa) (approximate values): 40 66 99 119 129 273 516

Analyzing Phase velocities

Approximate values for Vp and Poisson (please, see manual)

Vp (m/s): 312 396 479 521 541 770 1040 Poisson: 0.35 0.35 0.35 0.35 0.35 0.35 0.35

Vs30 (m/s): 218

Pay attention

Soil classification must be perfored by the user.

For Italian Users:

Dalla normativa (modifiche del D.M. 14/09/2005 Norme Tecniche per le Costruzioni, emanate con D.M. Infrastrutture del 14/01/2008, pubblicato su Gazzetta Ufficiale Supplemento ordinario nº 29 del 04/02/2008):

- A Ammassi rocciosi affioranti o terreni molto rigidi, caratterizzati da valori di VS30 superiori a 800 m/s, eventualmente comprendenti in superficie uno strato di alterazione, con spessore massimo di 3 m.
- B Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fine molto consistenti, con spessori superiori a 30 m, caratterizzati da graduale miglioramento delle proprietà meccaniche con la profondità e valori del VS30 compresi tra 360 m/s e 800 m/s (ovvero NSPT30 > 50 nei terreni a grana grossa e cu30> 250 kPa nei terreni a grana fina)
- C Depositi di terreni a grana grossa mediamente addensati o terreni a grana fine mediamente consistenti, con spessori superiori a 30 m caratterizzati da graduale miglioramento delle proprietà meccaniche con la profondità e valori del VS30 compresi tra 180 m/s e 360 m/s (ovvero 15 < NSPT30 < 50 nei terreni a grana grossa e 70 < cu30 < 250 kPa nei terreni a grana fina).
- D Depositi di terreni a grana grossa scarsamente addensati o terreni a grana fine scarsamente consistenti, con spessori superiori a 30 m caratterizzati da graduale miglioramento delle proprietà meccaniche con la profondità e valori del VS30 inferiori a 180 m/s (ovvero NSPT30 < 15 nei terreni a grana grossa e cu30 < 70 kPa nei terreni a grana fina).
- E Terreni dei sottosuoli dei tipi C o D per spessori non superiori a 20 m, posti sul substrato di riferimento (con VS > 800 m/s).
- S1 Depositi di terreni caratterizzati da valori di VS30 inferiori 100 m/s (ovvero 10 < cuS30 < 20 kPa) che includono uno strato di almeno 8 m di terreni a grana fina di bassa consistenza, oppure che includano almeno 3 m di torba o argille altamente organiche.
- S2 Depositi di terreni suscettibili di liquefazione, di argille sensitive, o qualsiasi altra categoria di sottosuolo non classificabile nei tipi precedenti.

winMASW

Surface Waves & Beyond www.winmasw.com

VERIFICA A LIQUEFAZIONE

PROGRAMMA DI CALCOLO: LIQUITER (GEOSTRU)

Progetto: Ristrutturazione con demolizione e ricostruzione di un fabbricato

Ditta: Soncini Mauro e Berselli Graziella

Comune: Via Erbosa, 2 – Lemizzone di Correggio (RE)

Normative di riferimento

- Normativa sismica del GRUPPO NAZIONALE di Difesa dei Terremoti.

- Raccomandazioni del National Center for Earthquake Reserch (NCEER)
- Eurocodice 8, Indicazioni progettuali per la resistenza sismica delle strutture
- Norme Tecniche D.M. del 17 Gennaio 2018

Metodo di calcolo: Robertson e Wride (1997)

Il 'metodo di Robertson e Wride' è basato sui risultati di prove CPT (Cone Penetration Test) ed utilizza l'indice di comportamento per il tipo di suolo **I**C che viene calcolato mediante l'utilizzo della seguente formula:

$$I_{c} = \left[(3,47 - \log_{10} Q)^{2} + (\log_{10} R_{f} + 1,22)^{2} \right]^{0.5}$$
(5.0a)

$$Q = \frac{q_c - \sigma_{vo}}{Pa} \left(\frac{Pa}{\sigma_{vo}}\right)^n \tag{5.0b}$$

$$R_f = \frac{f_s}{q_c - \sigma_{vo}} 100 \tag{5.0c}$$

dove:

q_c è la resistenza alla punta misurata

Pa è la tensione di riferimento (1 atmosfera) nelle stesse unità di σ'_{VO}

 $\mathbf{f_S}$ è l'attrito del manicotto

n è un'esponente che dipende dal tipo di suolo.

Inizialmente si assume n = 1, come per un suolo argilloso e si procede al calcolo di IC con la (5.0a).

Se $I_C > 2,6$ il suolo è probabilmente di tipo argilloso e l'analisi si ferma. Il terreno non si considera a rischio di liquefazione.

Se $I_C \le 2,6$, vuol dire che l'ipotesi assunta è errata, il suolo è di natura granulare, Q verrà ricalcolato utilizzando la (5.0a) usando come esponente n= 0,5.

Se è ancora $I_C \le 2,6$, significa che l'ipotesi è giusta e il suolo è probabilmente non plastico e granulare.

Se invece $I_C > 2,6$, vuol dire che l'ipotesi è di nuovo errata e il suolo è probabilmente limoso. Q deve essere nuovamente ricalcolato dalla (2.8b) ponendo n=0,75.

Calcolato I_C , si procede con la correzione della resistenza alla punta misurata q_c mediante la seguente espressione:

$$q_{c1N} = \frac{q_c}{Pa} \left(\frac{Pa}{\sigma_{vo}}\right)^n \tag{5.1}$$

Dove l'esponente di sforzo **n** è lo stesso utilizzato nel calcolo di I_C.

La correzione alla resistenza alla punta dovuta al contenuto di materiale fine viene determinata dalla seguente procedura:

Robertson e Wride classico

$$(q_{c1N})_{cs} = K_c q_{c1N}$$
 (5.2a)

$$K_c = -0.403 I_c^4 + 5.581 I_c^3 - 21.63 I_c^2 + 33.75 I_c - 17.88$$
 (5.2b)

Robertson e Wride modificato

$$\left(q_{c1N}\right)_{cs} = q_{c1N} + \Delta q_{c1N} \tag{5.3a}$$

$$\Delta q_{c1N} = \frac{K_c}{1 - K_c} q_{c1N} \tag{5.3b}$$

dove K_C dipende dal contenuto di fine, FC (%):

 $K_c = 0$ per FC ≤ 5 $K_c = 0.0267(FC - 5)$ per $5 < FC \leq 35$ $K_c = 0.8$ per FC > 35

FC (%) viene calcolato mediante l'espressione seguente:

FC (%) = 1,75
$$(I_C)^{3,25}$$
 - 3,7 (5.4)

La resistenza alla liquefazione per una magnitudo pari a 7,5 (**CRR**7,5) si calcola con le espressioni seguenti:

se $(q_{c1N})_{cs} < 50$

CRR = 0.833
$$\left[\frac{(q_{c1N})_{cs}}{1000} \right] + 0.05$$
 (5.5)

se $50 \le (q_{c1N})_{cs} < 160$

$$CRR = 93 \left[\frac{(q_{c1N})_{cs}}{1000} \right]^3 + 0.08$$
 (5.6)

Il Rapporto di Tensione Ciclica per eventi sismici di magnitudo 7,5 (**CSR7,5**) si determina dalla seguente espressione:

$$\frac{\tau_{av}}{\sigma_{vo}} = CSR_{7,5} = 0.65 \frac{a_g}{g} \frac{\sigma_{vo}}{\sigma_{vo}} r_d$$
 (5.7)

Per magnitudo diverse occorre introdurre il fattore correttivo **MSF** (Magnitudo Scaling Factor) come raccomandato dal **NCEER** (vedi Tabella 1)

$$CSR = \frac{CSR_{7,5}}{MSF}$$
 (5.8)

Tabella 1- Fattore di scala della magnitudo derivato da diversi ricercatori

Magnitudo	Seed H.B. & Idriss I.M. (1982)	Ambraseys N.N (1988).	NCEER (Seed R. B. et alii) (1997; 2003)
5,5	1,43	2,86	2,21
6,0	1,32	2,20	1,77
6,5	1,19	1,69	1,44
7,0	1,08	1,30	1,19
7,5	1,00	1,00	1,00
8,0	0,94	0,67	0,84
8,5	0,89	0,44	0,73

Per determinare il valore del coefficiente riduttivo **r**_d vengono utilizzate le formule raccomandate da un gruppo di esperti del **NCEER** (National Center for Earthquake Engineering Research):

per z < 9,15 m

$$r_{d} = 1,0 - 0,00765 z \tag{5.9}$$

per $9,15 \le z < 23 \text{ m}$

$$r_d = 1,174 - 0,00267 z$$
 (5.10)

Il fattore di sicurezza alla liquefazione FS viene determinato dalla relazione:

$$FS = \frac{CRR}{CSR}$$
 (5.11)

mentre **l'indice e il rischio di liquefazione** vengono calcolati con il metodo di **Iwasaki et alii** (1978; 1984).

DATI GENERALI

Normativa: Norme Tecniche Costruzioni 2018, Decreto 17	Gen. 2018
Fattore sicurezza normativa	1.25
Profondità falda idrica	2.7 m
DATI SIMICI	
Accelerazione Bedrock	0.16
Fattore amplificazione	2.47

Tipo Suolo: C-Sabbie, ghiaie mediamente addensate, argille di media consistenza Vs30=180-360 Morfologia: T1-Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i<=15°

Coefficiente amplificazione stratigrafica (SS)

Coefficiente amplificazione topografica (ST)

Magnitudo momento sismico (Mw)

Peak ground acceleration (PGA)

1.47

6.14

0.235

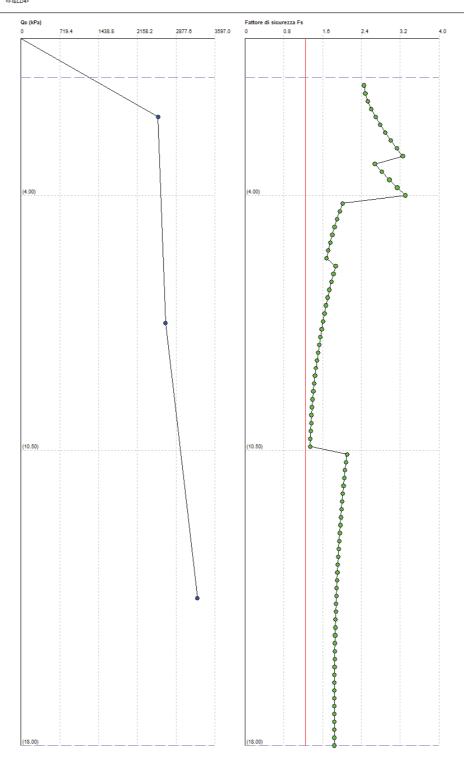
PROVA PENETROMETRICA CPT1

PARAMETRI GEOTECNICI

Strato	Descrizione	Quota iniziale	Quota finale	Peso unià volume	Peso unità volume saturo	Resistenza qc	Resistenza attrito laterale fs
Nr		(m)	(m)	(KN/mc)	(KN/mc)	(KPa)	(KPa)
1	Argilla inorganica molto	0	4	19.75	20.53	2539.43	135.33
	compatta						
2	Argille sabbiose e limose	4	10.5	19.8	20.59	2678.69	91.5
3	Argille sabbiose e limose	10.5	18	20.1	20.89	3269.73	153.77

Correzione per la magnitudo (MSF) 1.67

Profondità dal p.c. (m)	Pressione litostatica totale (KPa)	Pressione verticale effettiva (KPa)	Resistenza alla punta normalizzata Q	Attrito laterale normalizzato F(%)	Indice di comportamento Ic	Correzione per la pressione litostatica efficace CQ	Resistenza alla punta corretta qc1 (KPa)	Coefficiente riduttivo (rd)	Resistenza alla liquefazione (CRR)	Sforzo di taglio normalizzato (CSR)	Coefficiente di sicurezza Fs	Suscettibilità di liquefazione	Indice di liquefazione	Rischio
1.20	23.856	21.895	79.338	5.380	2.504	1.7	120.477	0.991	0.243	0.099	2.455	non suscettibile	0	Molto basso
1.40	27.962	24.039	73.968	5.388	2.524	1.7	124.913	0.989	0.261	0.105	2.480	non suscettibile	0	Molto basso
1.60	32.068	26.184	69.376	5.397	2.542	1.7	129.179	0.988	0.280	0.111	2.532	non suscettibile	0	Molto basso
1.80	36.174	28.329	65.398	5.406	2.559	1.7	133.292	0.986	0.300	0.115	2.604	non suscettibile	0	Molto basso
2.00	40.280	30.473	61.915	5.415	2.575	1.7	137.268	0.985	0.321	0.119	2.690	non suscettibile	0	Molto basso
2.20	44.386	32.618	58.836	5.424	2.590	1.7	141.119	0.983	0.341	0.122	2.787	non suscettibile	0	Molto basso
2.40	48.492	34.763	56.092	5.433	2.605	1.7	144.857	0.982	0.363	0.125	2.893	non suscettibile	0	Molto basso
2.60	52.598	36.907	53.629	5.442	2.618	1.7	148.490	0.980	0.384	0.128	3.006	non suscettibile	0	Molto basso
2.80	56.704	39.052	51.405	5.451	2.631	1.7	152.026	0.979	0.407	0.130	3.127	non suscettibile	0	Molto basso
3.00	60.810	41.197	49.384	5.460	2.643	1.7	155.473	0.977	0.430	0.132	3.253	non suscettibile	0	Molto basso
3.20	64.916	43.341	57.094	5.469	2.602	1.7	144.083	0.976	0.358	0.134	2.677	non suscettibile	0	Molto basso
3.40	69.022	45.486	54.311	5.478	2.617	1.7	148.082	0.974	0.382	0.135	2.823	non suscettibile	0	Molto basso
3.60	73.128	47.631	51.780	5.487	2.631	1.7	152.036	0.972	0.407	0.137		non suscettibile	0	basso
3.80	77.234	49.775	49.466	5.496	2.645	1.7	155.946	0.971	0.433	0.138	3.137	non suscettibile	0	basso
4.00	81.340	51.920	47.344	5.505	2.658	1.7	159.815	0.969	0.460	0.139		non suscettibile	0	basso
4.20	85.458	54.077	42.478	3.528	2.553	1.585777	129.549	0.968	0.282	0.140			0	basso
4.40	89.576	56.233	41.250	3.534	2.562	1.539942	128.066	0.966	0.275	0.141	1.954	non suscettibile	0	basso
4.60	93.694	58.390	40.102	3.540	2.572	1.497083	126.665	0.965	0.269	0.142			0	Molto basso
4.80	97.812	60.547	39.026	3.545	2.581	1.456907	125.340	0.963	0.263	0.142		non suscettibile	0	basso
5.00	101.930	62.703	38.015	3.551	2.590	1.419161	124.083	0.962	0.258	0.143			0	basso
5.20	106.048	64.860	37.063	3.557	2.598	1.38362	122.889	0.960	0.253	0.144	1.757	non suscettibile	0	basso
5.40	110.166	67.017	36.165	3.562	2.606	1.350089	121.752	0.959	0.248	0.144			0	basso
5.60	114.284	69.173	35.316	3.568	2.615	1.318395	120.668	0.957	0.243	0.145		non suscettibile	0	basso
5.80	118.402	71.330	35.894	3.574	2.610	1.401933	127.209	0.956	0.271	0.145			0	basso
6.00	122.520	73.487	34.784	3.580	2.620	1.360789	125.882	0.954	0.266	0.146		non suscettibile	0	basso
6.20	126.638	75.643	33.738 32.750	3.585	2.631	1.321992	124.620	0.953	0.260	0.146		non suscettibile	0	basso
6.40	130.756	79.957	31.815		2.641	1.285345	123.415	0.951	0.255	0.146		non suscettibile	0	basso
6.80	134.874	82.113	30.929	3.597	2.650	1.250676	122.265	0.950	0.250	0.147		non suscettibile	0	basso
7.00	138.992	84.270	30.929	3.609	2.669	1.21/828	121.164	0.948	0.245	0.147		non suscettibile		basso
7.00	143.110	64.2/0	30.089	3.009	2.069	1.180001	120.110	0.946	0.241	0.14/	1.039	non suscettibile	0	Molto basso


7.20	147.228	86.427	29.290	3.615	2.679	1.157049	119.098	0.945	0.237	0.147	1.609	non suscettibile	0	Molto basso
7.40	151.346	88.583	28.531	3.620	2.688	1.128879	118.127	0.943	0.233	0.148	1.581	non suscettibile	0	Molto basso
7.60	155.464	90.740	27.807	3.626	2.696	1.102048	117.193	0.942	0.230	0.148	1.555	non suscettibile	0	Molto
7.80	159.582	92.897	27.117	3.632	2.705	1.076463	116.294	0.940	0.226	0.148	1.530	non suscettibile	0	basso
8.00	163.700	95.053	26.459	3.638	2.714	1.05204	115.428	0.939	0.223	0.148	1.507	non suscettibile	0	basso Molto
8.20	167.818	97.210	25.829	3.644	2.722	1.0287	114.593	0.937	0.220	0.148	1.485	non suscettibile	0	basso
8.40	171.936	99.367	25.227	3.650	2.730	1.006373	113.787	0.936	0.217	0.148	1.464	non suscettibile	0	basso Molto
8.60	176.054	101.524	24.651	3.656	2.738	0.9849939	113.008	0.934	0.214	0.148		non suscettibile	0	basso Molto
						0.9645049								basso
8.80	180.172	103.680	24.098	3.662	2.746		112.254	0.933	0.212	0.148		non suscettibile	0	Molto basso
9.00	184.290	105.837	23.568	3.668	2.754	0.9448509	111.525	0.931	0.209	0.148		non suscettibile	0	Molto basso
9.20	188.408	107.994	23.060	3.674	2.762	0.9259819	110.820	0.928	0.207	0.148	1.393	non suscettibile	0	Molto basso
9.40	192.526	110.150	22.571	3.680	2.769	0.9078517	110.136	0.923	0.204	0.148	1.383	non suscettibile	0	Molto basso
9.60	196.644	112.307	22.101	3.686	2.777	0.8904179	109.472	0.918	0.202	0.147	1.373	non suscettibile	0	Molto basso
9.80	200.762	114.464	21.648	3.693	2.784	0.8736411	108.828	0.912	0.200	0.147	1.364	non suscettibile	0	Molto basso
10.00	204.880	116.620	21.213	3.699	2.791	0.8574847	108.203	0.907	0.198	0.146	1.356	non suscettibile	0	Molto basso
10.20	208.998	118.777	20.793	3.705	2.798	0.8419151	107.596	0.902	0.196	0.145	1.348	non suscettibile	0	Molto basso
10.40	213.116	120.934	20.388	3.711	2.805	0.8269008	107.006	0.896	0.194	0.145	1.341	non suscettibile	0	Molto basso
10.60	217.264	123.120	24.793	5.038	2.829	0.8122147	133.751	0.891	0.303	0.144	2.102	non suscettibile	0	Molto basso
10.80	221.442	125.337	24.321	5.044	2.836	0.7978501	132.903	0.886	0.298	0.143	2.082	non suscettibile	0	Molto basso
11.00	225.620	127.554	23.865	5.051	2.842	0.7839848	132.079	0.880	0.294	0.143	2.064	non suscettibile	0	Molto basso
11.20	229.798	129.770	23.426	5.058	2.848	0.7705931	131.276	0.875	0.290	0.142	2.047	non suscettibile	0	Molto
11.40	233.976	131.987	23.000	5.065	2.855	0.7576513	130.494	0.870	0.287	0.141	2.031	non suscettibile	0	basso Molto
11.60	238.154	134.204	22.589	5.072	2.861	0.7451369	129.732	0.864	0.283	0.140	2.016	non suscettibile	0	basso Molto
11.80	242.332	136.420	22.192	5.079	2.867	0.7330294	128.989	0.859	0.280	0.140	2.001	non suscettibile	0	basso Molto
12.00	246.510	138.637	21.807	5.086	2.873	0.7213089	128.264	0.854	0.276	0.139	1.988	non suscettibile	0	basso Molto
12.20	250.688	140.854	21.434	5.093	2.879	0.7099574	127.557	0.848	0.273	0.138		non suscettibile	0	basso Molto
12.40	254.866	143.070	21.073	5.100	2.885	0.6989576	126.867	0.843	0.270	0.137		non suscettibile	0	basso
12.40	259.044	145.287	20.722	5.107	2.891	0.6882935	126.193	0.838	0.267	0.137				basso
												non suscettibile	0	basso
12.80	263.222	147.504	20.383	5.115	2.896	0.6779498	125.534	0.832	0.264	0.136		non suscettibile	0	basso
13.00	267.400	149.720	20.053	5.122	2.902	0.6679126	124.891	0.827	0.261	0.135		non suscettibile	0	basso
13.20	271.578	151.937	19.733	5.129	2.908	0.6581681	124.261	0.822	0.258	0.134	1.922	non suscettibile	0	Molto basso
13.40	275.756	154.154	19.422	5.136	2.913	0.6487039	123.646	0.816	0.256	0.134	1.914	non suscettibile	0	Molto basso
13.60	279.934	156.370	19.120	5.143	2.919	0.6395079	123.044	0.811	0.253	0.133	1.905	non suscettibile	0	Molto basso
13.80	284.112	158.587	18.826	5.150	2.924	0.6305692	122.455	0.806	0.251	0.132	1.898	non suscettibile	0	Molto basso
14.00	288.290	160.804	18.541	5.158	2.930	0.6218768	121.878	0.800	0.248	0.131	1.891	non suscettibile	0	Molto basso
14.20	292.468	163.020	18.263	5.165	2.935	0.6134209	121.313	0.795	0.246	0.131	1.884	non suscettibile	0	Molto basso
14.40	296.646	165.237	17.993	5.172	2.940	0.6051917	120.760	0.790	0.244	0.130	1.878	non suscettibile	0	Molto basso
14.60	300.824	167.454	17.730	5.179	2.945	0.5971805	120.218	0.784	0.242	0.129	1.873	non suscettibile	0	Molto basso
14.80	305.002	169.670	17.473	5.187	2.951	0.5893785	119.687	0.779	0.239	0.128	1.868	non suscettibile	0	Molto basso
														Dasso

15.00	309.180	171.887	17.224	5.194	2.956	0.5817779	119.166	0.774	0.237	0.127	1.863	non suscettibile	0	Molto basso
15.20	313.358	174.104	16.981	5.201	2.961	0.5743707	118.656	0.768	0.235	0.127	1.859	non suscettibile	0	Molto basso
15.40	317.536	176.320	16.743	5.209	2.966	0.5671499	118.155	0.763	0.233	0.126	1.856	non suscettibile	0	Molto basso
15.60	321.714	178.537	16.512	5.216	2.971	0.5601082	117.664	0.757	0.231	0.125	1.852	non suscettibile	0	Molto basso
15.80	325.892	180.754	16.286	5.223	2.976	0.5532394	117.182	0.752	0.230	0.124	1.850	non suscettibile	0	Molto basso
16.00	330.070	182.970	16.066	5.231	2.981	0.5465369	116.709	0.747	0.228	0.123	1.847	non suscettibile	0	Molto basso
16.20	334.248	185.187	15.851	5.238	2.985	0.5399949	116.245	0.741	0.226	0.123	1.845	non suscettibile	0	Molto basso
16.40	338.426	187.404	15.642	5.246	2.990	0.5336077	115.789	0.736	0.224	0.122	1.843	non suscettibile	0	Molto basso
16.60	342.604	189.620	15.437	5.253	2.995	0.5273698	115.341	0.731	0.223	0.121	1.842	non suscettibile	0	Molto basso
16.80	346.782	191.837	15.237	5.261	3.000	0.5212761	114.901	0.725	0.221	0.120	1.841	non suscettibile	0	Molto basso
17.00	350.960	194.054	15.041	5.268	3.004	0.5153216	114.469	0.720	0.219	0.119	1.841	non suscettibile	0	Molto basso
17.20	355.138	196.270	14.850	5.276	3.009	0.5095015	114.045	0.715	0.218	0.118	1.841	non suscettibile	0	Molto basso
17.40	359.316	198.487	14.663	5.283	3.014	0.5038115	113.627	0.709	0.216	0.118	1.841	non suscettibile	0	Molto basso
17.60	363.494	200.704	14.480	5.291	3.018	0.4982471	113.217	0.704	0.215	0.117	1.841	non suscettibile	0	Molto basso
17.80	367.672	202.920	14.301	5.299	3.023	0.4928043	112.814	0.699	0.214	0.116	1.842	non suscettibile	0	Molto basso
18.00	371.850	205.137	14.127	5.306	3.027	0.4874792	112.417	0.693	0.212	0.115	1.843	non suscettibile	0	Molto basso

IPL (Iwasaki)=0 Zcrit=20 m Rischio=Molto basso

<FIELD1>

<PIELO3>
<PIELO4>
1:76

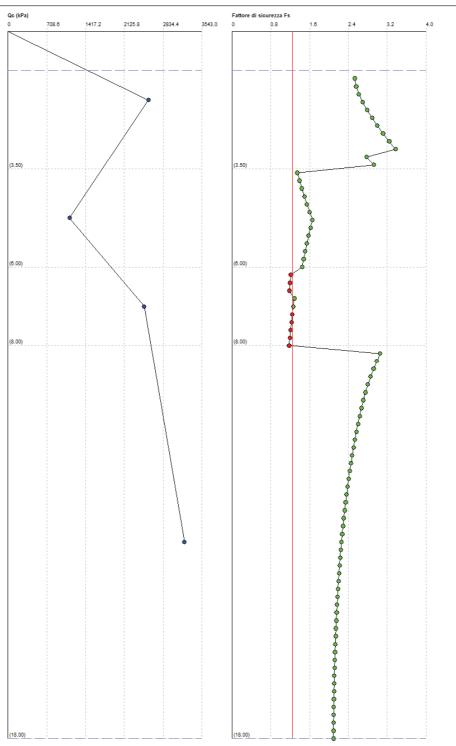
PROVA PENETROMETRICA CPT2

PARAMETRI GEOTECNICI

Strato Nr	Descrizione	Quota iniziale (m)	Quota finale (m)	Peso unià volume (KN/mc)	Peso unità volume saturo (KN/mc)	Resistenza qc (KPa)	Resistenza attrito laterale fs (KPa)
1	Argilla inorganica molto compatta	0	3.5	19.77	20.55		138.86
2	Argilla inorganica compatta		6	18.33	19.11	1125.8	54.33
3	Terre Limo sabbiose - Sabbie Arg Limi	6	8	19.68	20.46	2484.52	67.37
4	Argilla inorganica molto compatta	8	18	20.09	20.87	3220.8	175.74

Correzione per la magnitudo (MSF)

1.67


Profondità dal p.c. (m)	Pressione litostatica totale (KPa)	Pressione verticale effettiva (KPa)	Resistenza alla punta normalizzata Q	Attrito laterale normalizzato F(%)	Indice di comportamento Ic	Correzione per la pressione litostatica efficace CQ	Resistenza alla punta corretta qc1 (KPa)	Coefficiente riduttivo (rd)	Resistenza alla liquefazione (CRR)	Sforzo di taglio normalizzato (CSR)	Coefficiente di sicurezza Fs	Suscettibilità di liquefazione	Indice di liquefazione	Rischio
1.20	23.880	21.919	79.999	5.470	2.508	1.7	122.328	0.991	0.250	0.099	2.532	non suscettibile	0	Molto basso
1.40	27.990	24.067	74.580	5.478	2.527	1.7	126.821	0.989	0.270	0.105	2.560	non suscettibile	0	Molto basso
1.60	32.100	26.216	69.947	5.487	2.546	1.7	131.141	0.988	0.290	0.111	2.617	non suscettibile	0	Molto basso
1.80	36.210	28.365	65.934	5.496	2.563	1.7	135.305	0.986	0.310	0.115	2.693	non suscettibile	0	Molto basso
2.00	40.320	30.513	62.420	5.505	2.579	1.7	139.330	0.985	0.332	0.119	2.783	non suscettibile	0	Molto basso
2.20	44.430	32.662	59.315	5.514	2.594	1.7	143.228	0.983	0.353	0.122	2.885	non suscettibile	0	Molto basso
2.40	48.540	34.811	56.547	5.523	2.608	1.7	147.010	0.982	0.375	0.125	2.996	non suscettibile	0	Molto basso
2.60	52.650	36.959	54.063	5.532	2.621	1.7	150.685	0.980	0.398	0.128	3.115	non suscettibile	0	Molto basso
2.80	56.760	39.108	51.820	5.541	2.634	1.7	154.263	0.979	0.421	0.130	3.241	non suscettibile	0	Molto basso
3.00	60.870	41.257	49.782	5.550	2.646	1.7	157.750	0.977	0.445	0.132	3.372	non suscettibile	0	Molto basso
3.20	64.980	43.405	57.544	5.560	2.605	1.7	146.243	0.976	0.371	0.134	2.774	non suscettibile	0	Molto basso
3.40	69.090	45.554	54.739	5.569	2.620	1.7	150.289	0.974	0.396	0.135	2.926	non suscettibile	0	Molto basso
3.60	73.056	47.559	22.136	5.161	2.872	1.7	103.980	0.972	0.185	0.137	1.349	non suscettibile	0	Molto basso
3.80	76.878	49.419	21.225	5.180	2.887	1.7	106.638	0.971	0.193	0.138	1.394	non suscettibile	0	Molto basso
4.00	80.700	51.280	20.380	5.199	2.901	1.7	109.272	0.969	0.201	0.140	1.442	non suscettibile	0	Molto basso
4.20	84.522	53.141	19.595	5.218	2.915	1.7	111.885	0.968	0.210	0.141	1.492	non suscettibile	0	Molto basso
4.40	88.344	55.001	18.862	5.237	2.928	1.7	114.476	0.966	0.220	0.142	1.545	non suscettibile	0	Molto basso
4.60	92.166	56.862	18.178	5.256	2.941	1.7	117.048	0.965	0.229	0.143	1.600	non suscettibile	0	Molto basso
4.80	95.988	58.723	17.537	5.276	2.954	1.7	119.601	0.963	0.239	0.144	1.659	non suscettibile	0	Molto basso
5.00	99.810	60.583	16.935	5.295	2.967	1.650617	118.588	0.962	0.235	0.145	1.621	non suscettibile	0	Molto basso
5.20	103.632	62.444	16.369	5.315	2.979	1.601433	117.426	0.960	0.231	0.146	1.580	non suscettibile	0	Molto basso
5.40	107.454	64.305	15.836	5.335	2.991	1.555095	116.317	0.959	0.226	0.147	1.543	non suscettibile	0	Molto basso
5.60	111.276	66.165	15.333	5.355	3.003	1.511364	115.257	0.957	0.222	0.147	1.509	non suscettibile	0	Molto basso
5.80	115.098	68.026	14.858	5.375	3.014	1.470024	114.242	0.956	0.219	0.148	1.477	non suscettibile	0	Molto basso
6.00	118.920	69.887	14.407	5.396	3.025	1.430886	113.270	0.954	0.215	0.149	1.447	non suscettibile	0	Molto basso
6.20	123.012	72.017	31.781	2.853	2.584	1.279151	102.725	0.953	0.181	0.149	1.214	suscettibile	0.00	Molto basso
6.40	127.104	74.148	31.093	2.858	2.592	1.251483	101.943	0.951	0.179	0.149	1.196	suscettibile	0.00	Molto basso
6.60	131.196	76.279	30.440	2.863	2.600	1.225173	101.194	0.950	0.176	0.150	1.180	suscettibile	0.00	Molto basso
6.80	135.288	78.409	29.961	2.868	2.605	1.275357	106.460	0.948	0.192	0.150	1.284	non suscettibile	0	Molto basso

7.00	139.380	80.540	29.118	2.873	2.615	1.241618	105.565	0.946	0.189	0.150	1.263	non suscettibile	0	Molto basso
7.20	143.472	82.671	28.318	2.878	2.625	1.209617	104.710	0.945	0.187	0.150	1.244	suscettibile	0.00	Molto basso
7.40	147.564	84.801	27.558	2.883	2.635	1.179225	103.892	0.943	0.184	0.150	1.226	suscettibile	0.00	Molto basso
7.60	151.656	86.932	26.835	2.888	2.644	1.150323	103.107	0.942	0.182	0.150	1.209	suscettibile	0.00	
7.80	155.748	89.063	26.148	2.893	2.653	1.122803	102.353	0.940	0.180	0.151	1.194	suscettibile	0.00	Molto basso
8.00	159.840	91.193	25.492	2.898	2.662	1.09657	101.629	0.939	0.178	0.151	1.179	suscettibile	0.00	Molto basso
8.20	164.014	93.406	32.726	5.749	2.782	1.070594	159.855	0.937	0.460	0.151	3.052	non suscettibile	0	
8.40	168.188	95.619	31.925	5.757	2.790	1.04582	158.398	0.936	0.450	0.151	2.984	non suscettibile	0	Molto basso
8.60	172.362	97.831	31.160	5.765	2.798	1.022166	156.994	0.934	0.440	0.151	2.919	non suscettibile	0	Molto basso
8.80	176.536	100.044	30.429	5.773	2.806	0.999559	155.638	0.933	0.431	0.151	2.858	non suscettibile	0	Molto basso
9.00	180.710	102.257	29.730	5.781	2.813	0.9779302	154.328	0.931	0.422	0.151	2.800	non suscettibile	0	Molto basso
9.20	184.884	104.470	29.060	5.789	2.821	0.9572176	153.062	0.928	0.413	0.150	2.749	non suscettibile	0	Molto basso
9.40	189.058	106.682	28.418	5.797	2.828	0.9373641	151.836	0.923	0.406	0.150	2.708	non suscettibile	0	Molto basso
9.60	193.232	108.895	27.803	5.805	2.835	0.9183174	150.650	0.918	0.398	0.149	2.669	non suscettibile	0	Molto basso
9.80	197.406	111.108	27.211	5.813	2.843	0.9000294	149.500	0.912	0.391	0.148	2.633	non suscettibile	0	Molto basso
10.00	201.580	113.320	26.643	5.821	2.850	0.8824556	148.385	0.907	0.384	0.148	2.598	non suscettibile	0	Molto basso
10.20	205.754	115.533	26.097	5.829	2.856	0.8655549	147.303	0.902	0.377	0.147	2.566	non suscettibile	0	Molto basso
10.40	209.928	117.746	25.571	5.837	2.863	0.8492894	146.253	0.896	0.371	0.146	2.535	non suscettibile	0	Molto basso
10.60	214.102	119.958	25.065	5.845	2.870	0.833624	145.233	0.891	0.365	0.146	2.506	non suscettibile	0	Molto basso
10.80	218.276	122.171	24.576	5.853	2.876	0.818526	144.241	0.886	0.359	0.145	2.479	non suscettibile	0	Molto basso
11.00	222.450	124.384	24.106	5.861	2.883	0.8039652	143.277	0.880	0.354	0.144	2.453	non suscettibile	0	Molto basso
11.20	226.624	126.596	23.651	5.869	2.889	0.7899133	142.339	0.875	0.348	0.143	2.428	non suscettibile	0	Molto basso
11.40	230.798	128.809	23.213	5.878	2.896	0.7763442	141.425	0.870	0.343	0.143	2.405	non suscettibile	0	Molto basso
11.60	234.972	131.022	22.789	5.886	2.902	0.7632334	140.535	0.864	0.338	0.142	2.383	non suscettibile	0	Molto basso
11.80	239.146	133.234	22.379	5.894	2.908	0.7505582	139.668	0.859	0.333	0.141	2.362	non suscettibile	0	Molto basso
12.00	243.320	135.447	21.983	5.902	2.914	0.738297	138.823	0.854	0.329	0.140	2.342	non suscettibile	0	Molto basso
12.20	247.494	137.660	21.599	5.911	2.920	0.72643	137.999	0.848	0.324	0.140	2.323	non suscettibile	0	Molto basso
12.40	251.668	139.872	21.227	5.919	2.926	0.7149384	137.194	0.843	0.320	0.139	2.306	non suscettibile	0	Molto basso
12.60	255.842	142.085	20.868	5.927	2.932	0.7038047	136.409	0.838	0.316	0.138	2.289	non suscettibile	0	Molto basso
12.80	260.016	144.298	20.519	5.936	2.938	0.6930126	135.642	0.832	0.312	0.137	2.273	non suscettibile	0	Molto basso
13.00	264.190	146.510	20.180	5.944	2.943	0.6825464	134.893	0.827	0.308	0.137	2.258	non suscettibile	0	Molto basso
13.20	268.364	148.723	19.852	5.952	2.949	0.6723916	134.162	0.822	0.305	0.136	2.244	non suscettibile	0	Molto basso
13.40	272.538	150.936	19.533	5.961	2.955	0.6625345	133.446	0.816	0.301	0.135	2.231	non suscettibile	0	Molto basso
13.60	276.712	153.148	19.224	5.969	2.960	0.6529623	132.747	0.811	0.298	0.134	2.218	non suscettibile	0	Molto basso
13.80	280.886	155.361	18.923	5.978	2.966	0.6436626	132.062	0.806	0.294	0.133	2.206	non suscettibile	0	Molto basso
14.00	285.060	157.574	18.631	5.986	2.971	0.6346243	131.393	0.800	0.291	0.133		non suscettibile	0	basso
14.20	289.234	159.786	18.347	5.995	2.976	0.6258362	130.738	0.795	0.288	0.132		non suscettibile	0	basso
14.40	293.408	161.999	18.070	6.003	2.982	0.6172882	130.096	0.790	0.285	0.131		non suscettibile	0	basso
14.60	297.582	164.212	17.802	6.012	2.987	0.6089705	129.468	0.784	0.282	0.130	2.166	non suscettibile	0	Molto basso

14.80	301.756	166.424	17.540	6.020	2.992	0.600874	128.852	0.779	0.279	0.129	2.158	non suscettibile	0	Molto basso
15.00	305.930	168.637	17.285	6.029	2.997	0.5929901	128.249	0.774	0.276	0.128	2.150	non suscettibile	0	Molto basso
15.20	310.104	170.850	17.037	6.038	3.002	0.5853102	127.658	0.768	0.273	0.128	2.142	non suscettibile	0	Molto basso
15.40	314.278	173.062	16.795	6.046	3.008	0.5778269	127.078	0.763	0.271	0.127	2.136	non suscettibile	0	Molto basso
15.60	318.452	175.275	16.559	6.055	3.013	0.5705323	126.510	0.757	0.268	0.126	2.129	non suscettibile	0	Molto basso
15.80	322.626	177.488	16.329	6.064	3.017	0.5634197	125.952	0.752	0.266	0.125	2.124	non suscettibile	0	Molto basso
16.00	326.800	179.700	16.105	6.073	3.022	0.5564823	125.405	0.747	0.263	0.124	2.118	non suscettibile	0	Molto basso
16.20	330.974	181.913	15.886	6.081	3.027	0.5497135	124.868	0.741	0.261	0.124	2.114	non suscettibile	0	Molto basso
16.40	335.148	184.126	15.672	6.090	3.032	0.5431075	124.341	0.736	0.259	0.123	2.109	non suscettibile	0	Molto basso
16.60	339.322	186.338	15.464	6.099	3.037	0.5366584	123.824	0.731	0.257	0.122	2.106	non suscettibile	0	Molto basso
16.80	343.496	188.551	15.260	6.108	3.042	0.5303607	123.316	0.725	0.254	0.121	2.102	non suscettibile	0	Molto basso
17.00	347.670	190.764	15.061	6.117	3.046	0.524209	122.818	0.720	0.252	0.120	2.100	non suscettibile	0	Molto basso
17.20	351.844	192.976	14.867	6.126	3.051	0.5181984	122.328	0.715	0.250	0.119	2.097	non suscettibile	0	Molto basso
17.40	356.018	195.189	14.677	6.134	3.056	0.5123241	121.846	0.709	0.248	0.118	2.095	non suscettibile	0	Molto basso
17.60	360.192	197.402	14.491	6.143	3.060	0.5065814	121.373	0.704	0.246	0.118	2.094	non suscettibile	0	Molto basso
17.80	364.366	199.614	14.310	6.152	3.065	0.5009661	120.908	0.699	0.244	0.117	2.093	non suscettibile	0	Molto basso
18.00	368.540	201.827	14.132	6.161	3.069	0.4954739	120.451	0.693	0.243	0.116	2.092	non suscettibile	0	Molto basso

IPL (Iwasaki)=0 Zcrit=20 m Rischio=Molto basso

<FIELD1>
<FIELD2>
<FIELD3>
<FIELD4>
1:76

